论文标题

在环境特定的操作中增强自动移动机器人的门态检测

Enhancing Door-Status Detection for Autonomous Mobile Robots during Environment-Specific Operational Use

论文作者

Antonazzi, Michele, Luperto, Matteo, Basilico, Nicola, Borghese, N. Alberto

论文摘要

门态检测,即认识到门及其状态(开放或关闭)的存在,可能会引起对移动机器人的导航性能的显着影响,尤其是对于动态设置,门可以启用或禁用段落,从而改变地图的拓扑。在这项工作中,我们解决了在同一环境中长期运行的移动机器人构建门状探测器模块的问题,从而从不同的角度观察相同的门。首先,我们通过考虑移动机器人的典型感知设置来展示如何基于对象检测来改善主流方法。因此,我们设计了一种从机器人的角度构建图像数据集的方法,并利用它来获得基于深度学习的门状探测器。然后,我们利用机器人的典型工作条件来限定该模型,以通过微调和其他数据来提高其在工作环境中的性能。我们的实验分析表明,在模拟和现实世界中获得的结果,该方法的有效性也突出了微调方法的成本和收益之间的权衡。

Door-status detection, namely recognizing the presence of a door and its status (open or closed), can induce a remarkable impact on a mobile robot's navigation performance, especially for dynamic settings where doors can enable or disable passages, changing the topology of the map. In this work, we address the problem of building a door-status detector module for a mobile robot operating in the same environment for a long time, thus observing the same set of doors from different points of view. First, we show how to improve the mainstream approach based on object detection by considering the constrained perception setup typical of a mobile robot. Hence, we devise a method to build a dataset of images taken from a robot's perspective and we exploit it to obtain a door-status detector based on deep learning. We then leverage the typical working conditions of a robot to qualify the model for boosting its performance in the working environment via fine-tuning with additional data. Our experimental analysis shows the effectiveness of this method with results obtained both in simulation and in the real-world, that also highlight a trade-off between costs and benefits of the fine-tuning approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源