论文标题

盖特奇:超越端到端的步态识别以更好地实用性

GaitEdge: Beyond Plain End-to-end Gait Recognition for Better Practicality

论文作者

Liang, Junhao, Fan, Chao, Hou, Saihui, Shen, Chuanfu, Huang, Yongzhen, Yu, Shiqi

论文摘要

步态是长距离识别个体的最有前途的生物识别技术之一。尽管大多数以前的方法都集中在识别轮廓上,但直接从RGB图像中提取步态特征的几种端到端方法表现更好。但是,我们证明,这些端到端方法可能不可避免地会遭受步态液化的噪音,即低级纹理和五颜六色的信息。在实验上,我们设计了跨域评估以支持这种观点。在这项工作中,我们提出了一个名为Gaitedge的新颖端到端框架,该框架可以有效地阻止步态 - 近距离信息并发布端到端训练潜力。具体而言,Gaitede合成了行人分割网络的输出,然后将其馈送到随后的识别网络中,在该网络中,合成轮廓由物体的可训练边缘和固定内部室内装置组成,以限制识别网络收到的信息。此外,对齐轮廓的步态被嵌入到盖地中而不会失去可怜性。关于CASIA-B和我们新建的TTG-200的实验结果表明,Gaitedge明显优于先前的方法,并提供了更实用的端到端范式。所有源代码均可在https://github.com/shiqiyu/opengait上找到。

Gait is one of the most promising biometrics to identify individuals at a long distance. Although most previous methods have focused on recognizing the silhouettes, several end-to-end methods that extract gait features directly from RGB images perform better. However, we demonstrate that these end-to-end methods may inevitably suffer from the gait-irrelevant noises, i.e., low-level texture and colorful information. Experimentally, we design the cross-domain evaluation to support this view. In this work, we propose a novel end-to-end framework named GaitEdge which can effectively block gait-irrelevant information and release end-to-end training potential. Specifically, GaitEdge synthesizes the output of the pedestrian segmentation network and then feeds it to the subsequent recognition network, where the synthetic silhouettes consist of trainable edges of bodies and fixed interiors to limit the information that the recognition network receives. Besides, GaitAlign for aligning silhouettes is embedded into the GaitEdge without losing differentiability. Experimental results on CASIA-B and our newly built TTG-200 indicate that GaitEdge significantly outperforms the previous methods and provides a more practical end-to-end paradigm. All the source code are available at https://github.com/ShiqiYu/OpenGait.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源