论文标题
在几乎线性时间内半随机稀疏恢复
Semi-Random Sparse Recovery in Nearly-Linear Time
论文作者
论文摘要
稀疏恢复是最基本和研究最充分的反问题之一。该问题的标准统计公式可以通过一般凸编程技术以及更实用,快速(几乎是线性时间)迭代方法来解决。但是,这些后一种“快速算法”以前已经被观察到在各种现实世界中都很脆弱。 我们研究了快速稀疏恢复算法对生成模型的脆弱性,通过研究其稳健性对“有用的”半随机对手的稳定性变化,该框架测试算法是否过度适应输入假设。 We consider the following basic model: let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a measurement matrix which contains an unknown subset of rows $\mathbf{G} \in \mathbb{R}^{m \times d}$ which are bounded and satisfy the restricted isometry property (RIP), but is否则任意。让$ x^\ star \ in \ mathbb {r}^d $为$ s $ -sparse,并给定确切的测量值$ b = \ mathbf {a} x^\ star $或嘈杂的测量$ b = \ mathbf {a} 时间。我们将算法扩展到较弱的生成模型,使我们的种植的RIP假设放松到自然加权变体,并表明我们的方法可以保证自然插入测量矩阵的质量,以在某些参数方面以余和时间运行。 我们的方法与先前的快速迭代方法不同,并在半随机生成模型下具有可证明的保证:使稀疏恢复可拖动的子元素上的自然条件是NP-HARD的验证。我们设计了一种针对稀疏恢复的几何形状量身定制的新迭代方法,这对我们的半随机模型非常健壮。我们希望我们的方法为自然统计反问题的新稳健,有效算法打开了大门。
Sparse recovery is one of the most fundamental and well-studied inverse problems. Standard statistical formulations of the problem are provably solved by general convex programming techniques and more practical, fast (nearly-linear time) iterative methods. However, these latter "fast algorithms" have previously been observed to be brittle in various real-world settings. We investigate the brittleness of fast sparse recovery algorithms to generative model changes through the lens of studying their robustness to a "helpful" semi-random adversary, a framework which tests whether an algorithm overfits to input assumptions. We consider the following basic model: let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a measurement matrix which contains an unknown subset of rows $\mathbf{G} \in \mathbb{R}^{m \times d}$ which are bounded and satisfy the restricted isometry property (RIP), but is otherwise arbitrary. Letting $x^\star \in \mathbb{R}^d$ be $s$-sparse, and given either exact measurements $b = \mathbf{A} x^\star$ or noisy measurements $b = \mathbf{A} x^\star + ξ$, we design algorithms recovering $x^\star$ information-theoretically optimally in nearly-linear time. We extend our algorithm to hold for weaker generative models relaxing our planted RIP assumption to a natural weighted variant, and show that our method's guarantees naturally interpolate the quality of the measurement matrix to, in some parameter regimes, run in sublinear time. Our approach differs from prior fast iterative methods with provable guarantees under semi-random generative models: natural conditions on a submatrix which make sparse recovery tractable are NP-hard to verify. We design a new iterative method tailored to the geometry of sparse recovery which is provably robust to our semi-random model. We hope our approach opens the door to new robust, efficient algorithms for natural statistical inverse problems.