论文标题

城市车辆的出行特征采矿和基于知识图的旅行

Urban Vehicle Mobility Characteristic Mining and Trip Generation Based on Knowledge Graph

论文作者

Li, Guilong, Chen, Yixian, Xie, Jun, Lin, Qinghai, He, Zhaocheng

论文摘要

城市运输的运作产生了大量的交通数据,其中包含丰富的信息,并且对于智能运输系统的研究具有重要意义。特别是,随着感知技术的提高,已经有可能在车辆级别的车辆级别中获取Trip数据。它具有更细的粒度和更大的研究潜力,但与此同时,在数据组织和分析方面需要更高的要求。更重要的是,由于隐私问题,它不能公开。为了更好地处理个人级别的城市车辆旅行大数据,我们介绍了该研究的知识图。为了组织个人级别的旅行数据,我们设计并构建了一个个人级别的旅行知识图,从而大大提高了获得数据的效率。然后,我们将旅行知识图用作数据引擎,并设计了逻辑规则,以结合运输域知识来挖掘车辆的行程特征。最后,我们进一步提出了一种基于知识图生成的个人级别旅行合成方法,以解决个人级流量数据的隐私问题。该实验表明,最终生成的跳闸数据与历史模式和车辆关联中的历史数据相似,并且具有高空间连续性。

The operation of urban transportation produces massive traffic data, which contains abundant information and is of great significance for the study of intelligent transportation systems. In particular, with the improvement of perception technology, it has become possible to obtain trip data in individual-level of vehicles. It has finer granularity and greater research potential, but at the same time requires higher requirements in terms of data organization and analysis. More importantly it cannot be made public due to privacy issues. To handle individual-level urban vehicle trip big data better, we introduce the knowledge graph for the study. For organization of individual level trip data, we designed and constructed an individual-level trip knowledge graph which greatly improves the efficiency of obtaining data. Then we used the trip knowledge graph as the data engine and designed logical rules to mine the trip characteristics of vehicles by combining the transportation domain knowledge. Finally, we further propose an individual-level trip synthesis method based on knowledge graph generation to address the privacy issue of individual-level traffic data. The experiment shows that the final generated trip data are similar to the historical one in mobility patterns and vehicle associations, and have high spatial continuity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源