论文标题

NEREF:流体表面重建和隐式表示的神经折射场

NeReF: Neural Refractive Field for Fluid Surface Reconstruction and Implicit Representation

论文作者

Wang, Ziyu, Yang, Wei, Cao, Junming, Xu, Lan, Yu, Junqing, Yu, Jingyi

论文摘要

现有的神经重建方案(例如神经辐射场(NERF))主要集中于建模不透明对象。我们提出了一个新型的神经屈光场(NEREF),以同时估计流体前沿的表面位置和正常状态来恢复透明流体的波前。与将重建目标视为表面的单层的先前艺术不同,NEREF是专门配制的,以恢复具有相应密度场的体积正常场。 NEREF将根据其累积的折射点和正常情况折射查询射线,我们采用折射射线的对应关系和唯一性进行NEREF优化。我们表明NEREF作为一种全球优化方案,可以更鲁棒地应对折射扭曲,这是对通信匹配的传统方法有害的。此外,波前的连续NEREF表示可以视图综合以及正常的整合。我们验证合成和真实数据的方法,并表明它特别适合稀疏的多视图获取。因此,我们在各种表面形状上构建一个小的光场阵列并进行实验,以证明高保真性NEREF重建。

Existing neural reconstruction schemes such as Neural Radiance Field (NeRF) are largely focused on modeling opaque objects. We present a novel neural refractive field(NeReF) to recover wavefront of transparent fluids by simultaneously estimating the surface position and normal of the fluid front. Unlike prior arts that treat the reconstruction target as a single layer of the surface, NeReF is specifically formulated to recover a volumetric normal field with its corresponding density field. A query ray will be refracted by NeReF according to its accumulated refractive point and normal, and we employ the correspondences and uniqueness of refracted ray for NeReF optimization. We show NeReF, as a global optimization scheme, can more robustly tackle refraction distortions detrimental to traditional methods for correspondence matching. Furthermore, the continuous NeReF representation of wavefront enables view synthesis as well as normal integration. We validate our approach on both synthetic and real data and show it is particularly suitable for sparse multi-view acquisition. We hence build a small light field array and experiment on various surface shapes to demonstrate high fidelity NeReF reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源