论文标题
部分可观测时空混沌系统的无模型预测
Asymptotic normality in linear regression with approximately sparse structure
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper we study the asymptotic normality in high-dimensional linear regression. We focus on the case where the covariance matrix of the regression variables has a KMS structure, in asymptotic settings where the number of predictors, $p$, is proportional to the number of observations, $n$. The main result of the paper is the derivation of the exact asymptotic distribution for the suitably centered and normalized squared norm of the product between predictor matrix, $\mathbb{X}$, and outcome variable, $Y$, i.e. the statistic $\|\mathbb{X}'Y\|_{2}^{2}$. Additionally, we consider a specific case of approximate sparsity of the model parameter vector $β$ and perform a Monte-Carlo simulation study. The simulation results suggest that the statistic approaches the limiting distribution fairly quickly even under high variable multi-correlation and relatively small number of observations, suggesting possible applications to the construction of statistical testing procedures for the real-world data and related problems.