论文标题

状态参数单数的暗能量方程是吗?

Is the dark energy equation of state parameter singular?

论文作者

Ozulker, Emre

论文摘要

过去具有负能量密度的暗能量可以同时解决各种宇宙学的紧张局势,如果今天要驱动观察到的宇宙加速度的积极,我们表明它应该在其状态参数方程中具有一个极。更准确地说,在一个在空间统一的宇宙中,一种完美的液体(提交给局部能量保护的常规连续性方程),其能量密度$ρ(z)$以孤立的零$ z = z_p $消失,必然在其州参数$ w(z)$ w(z)$ w(z)$ w(z)$ w(z)$ w(z)$ w(z)$ W(z)$ w(z)$ w(z)$ w(z)$ w(z)$ w(z)$ w(z)中有一个plet cop,$ w(z)$ w(z)$ w(z)$ w(z)$ w(z)$ w(z)$ w(z)$ w(z)$ w(z) z_p^+$,它在限制$ z \ to z_p^ - $的情况下与负无穷大,我们假设$ z_p $不是$ w(z)$的杆的累加点。 但是,这种相反的陈述是,这种$ W(z)$的极点对应于当时消失的能量密度,这是不正确的,正如我们在反例中所显示的那样。该结果的直接含义是,应该直接在观察中直接观察地重建状态参数方程,而是从直接重建的深色能量密度中推断出来。

A dark energy with a negative energy density in the past can simultaneously address various cosmological tensions, and if it is to be positive today to drive the observed acceleration of the universe, we show that it should have a pole in its equation of state parameter. More precisely, in a spatially uniform universe, a perfect fluid (submitting to the usual continuity equation of local energy conservation) whose energy density $ρ(z)$ vanishes at an isolated zero $z=z_p$, necessarily has a pole in its equation of state parameter $w(z)$ at $z_p$, and, $w(z)$ diverges to positive infinity in the limit $z\to z_p^+$ and it diverges to negative infinity in the limit $z\to z_p^-$ -- we assume that $z_p$ is not an accumulation point for poles of $w(z)$. However, the converse statement that this kind of a pole of $w(z)$ corresponds to a vanishing energy density at that point is not true as we show by a counterexample. An immediate implication of this result is that one should be hesitant to observationally reconstruct the equation of state parameter of the dark energy directly, and rather infer it from a directly reconstructed dark energy density.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源