论文标题

使用基于生成模型的增强培训数据集增强机械元模型

Enhancing Mechanical Metamodels with a Generative Model-Based Augmented Training Dataset

论文作者

Kobeissi, Hiba, Mohammadzadeh, Saeed, Lejeune, Emma

论文摘要

对生物软组织进行建模是由于材料异质性的一部分。微观结构模式在定义这些组织的机械行为方面起着重要作用,既具有挑战性的表征,又难以模拟。最近,基于机器学习的方法来预测异质材料的机械行为,使得更彻底地探索与异质材料块相关的大量输入参数空间。具体而言,我们可以训练机器学习(ML)模型,以近似于计算上昂贵的异质材料模拟,其中ML模型在模拟的数据集上进行了训练,该模拟捕获了感兴趣材料中存在的空间异质性范围。但是,在更广泛地将这些技术应用于生物组织时,存在一个主要的局限性:相关的微观结构模式既具有挑战性又难以分析。因此,可用于表征正在研究的输入域的有用示例的数量有限。在这项工作中,我们研究了基于ML的生成模型以及程序方法的功效,作为增强有限输入模式数据集的工具。我们发现,具有自适应歧视器增强器的基于样式的生成对抗网络能够成功利用1,000个示例模式来创建最真实的生成模式。通常,与真实模式有足够相似之处的不同生成模式可以用作有限元模拟的输入,以有意义地增强训练数据集。为了实现这一方法论贡献,我们创建了一个基于Cahn-Hilliard模式的有限元分析模拟的开放访问数据集。我们预计未来的研究人员将能够利用此数据集并基于此处介绍的工作。

Modeling biological soft tissue is complex in part due to material heterogeneity. Microstructural patterns, which play a major role in defining the mechanical behavior of these tissues, are both challenging to characterize, and difficult to simulate. Recently, machine learning-based methods to predict the mechanical behavior of heterogeneous materials have made it possible to more thoroughly explore the massive input parameter space associated with heterogeneous blocks of material. Specifically, we can train machine learning (ML) models to closely approximate computationally expensive heterogeneous material simulations where the ML model is trained on a dataset of simulations that capture the range of spatial heterogeneity present in the material of interest. However, when it comes to applying these techniques to biological tissue more broadly, there is a major limitation: the relevant microstructural patterns are both challenging to obtain and difficult to analyze. Consequently, the number of useful examples available to characterize the input domain under study is limited. In this work, we investigate the efficacy of ML-based generative models as well as procedural methods as a tool for augmenting limited input pattern datasets. We find that a Style-based Generative Adversarial Network with adaptive discriminator augmentation is able to successfully leverage just 1,000 example patterns to create the most authentic generated patterns. In general, diverse generated patterns with adequate resemblance to the real patterns can be used as inputs to finite element simulations to meaningfully augment the training dataset. To enable this methodological contribution, we have created an open access dataset of Finite Element Analysis simulations based on Cahn-Hilliard patterns. We anticipate that future researchers will be able to leverage this dataset and build on the work presented here.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源