论文标题

Navaiairway:基于支气管敏感的深度学习气道细分管道

NaviAirway: a Bronchiole-sensitive Deep Learning-based Airway Segmentation Pipeline

论文作者

Wang, Andong, Tam, Terence Chi Chun, Poon, Ho Ming, Yu, Kun-Chang, Lee, Wei-Ning

论文摘要

气道分割对于胸部CT图像分析至关重要。与追求高像素准确性的自然图像细分不同,气道细分集中在拓扑上。这项任务不仅是因为它具有复杂的树状结构,而且还因为不同世代的气道分支之间的严重像素失衡。为了解决这些问题,我们提出了一种Naviairway方法,该方法包括对气道拓扑保存的支气管敏感损失功能和迭代培训策略,用于在不同气道世代进行准确的模型学习。为了补充模型学到的气道分支的特征,我们以教师的方式将知识从许多未标记的胸部CT图像中提炼出来。实验结果表明,NADIAIRWAY优于现有方法,尤其是在鉴定高代细支气管和对新CT扫描的鲁棒性方面。此外,纳维亚威(Naverway)足够通用,可以与不同的骨干模型结合使用,以显着提高其性能。 Naveraway可以生成用于导航支气管镜检查的气道路线图,并且在细分生物医学图像中细分和长管结构时,也可以应用于其他情况。该代码可在https://github.com/antonotnawang/naviairway上公开获得。

Airway segmentation is essential for chest CT image analysis. Different from natural image segmentation, which pursues high pixel-wise accuracy, airway segmentation focuses on topology. The task is challenging not only because of its complex tree-like structure but also the severe pixel imbalance among airway branches of different generations. To tackle the problems, we present a NaviAirway method which consists of a bronchiole-sensitive loss function for airway topology preservation and an iterative training strategy for accurate model learning across different airway generations. To supplement the features of airway branches learned by the model, we distill the knowledge from numerous unlabeled chest CT images in a teacher-student manner. Experimental results show that NaviAirway outperforms existing methods, particularly in the identification of higher-generation bronchioles and robustness to new CT scans. Moreover, NaviAirway is general enough to be combined with different backbone models to significantly improve their performance. NaviAirway can generate an airway roadmap for Navigation Bronchoscopy and can also be applied to other scenarios when segmenting fine and long tubular structures in biomedical images. The code is publicly available on https://github.com/AntonotnaWang/NaviAirway.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源