论文标题

这是AI匹配:使用嵌入的架构匹配的两步方法

It's AI Match: A Two-Step Approach for Schema Matching Using Embeddings

论文作者

Hättasch, Benjamin, Truong-Ngoc, Michael, Schmidt, Andreas, Binnig, Carsten

论文摘要

由于数据通常存储在不同的来源中,因此需要集成它以收集一个全局视图,以创建价值并从中获得知识。数据集成的关键步骤是架构匹配,旨在在两个模式的元素之间找到语义对应关系。为了减少模式匹配中涉及的手动工作,已经开发了许多用于自动确定模式通信的解决方案。 在本文中,我们提出了一种基于神经嵌入的架构匹配的新型端到端方法。主要想法是使用由表匹配步骤组成的两步​​方法,然后是属性匹配步骤。在这两个步骤中,我们使用代表整个表或单个属性的不同级别上的嵌入式。我们的结果表明,我们的方法能够以强大而可靠的方式确定对应关系,并且与传统的模式匹配方法相比,可以找到非平凡的对应关系。

Since data is often stored in different sources, it needs to be integrated to gather a global view that is required in order to create value and derive knowledge from it. A critical step in data integration is schema matching which aims to find semantic correspondences between elements of two schemata. In order to reduce the manual effort involved in schema matching, many solutions for the automatic determination of schema correspondences have already been developed. In this paper, we propose a novel end-to-end approach for schema matching based on neural embeddings. The main idea is to use a two-step approach consisting of a table matching step followed by an attribute matching step. In both steps we use embeddings on different levels either representing the whole table or single attributes. Our results show that our approach is able to determine correspondences in a robust and reliable way and compared to traditional schema matching approaches can find non-trivial correspondences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源