论文标题

深度学习神经网络,用于文本的情绪分类:增强的泄漏的整流线性单位激活和加权损失

Deep Learning Neural Networks for Emotion Classification from Text: Enhanced Leaky Rectified Linear Unit Activation and Weighted Loss

论文作者

Yang, Hui, Alsadoon, Abeer, Prasad, P. W. C., Al-Dala'in, Thair, Rashid, Tarik A., Maag, Angelika, Alsadoon, Omar Hisham

论文摘要

在线评论的准确情感分类对于商业组织获得对市场的更深入的见解至关重要。尽管在这一领域成功实施了深度学习,但准确性和处理时间仍然是阻止其具有全部潜力的主要问题。本文提出了一种增强的泄漏的整流线性单位激活和加权损耗(ELRELUWL)算法,以增强文本情感分类和更快的参数收敛速度。该算法包括拐点的定义和拐点左侧的输入的斜率,以避免梯度饱和。它还考虑了属于每个类别的样本的重量,以补偿数据不平衡的影响。卷积神经网络(CNN)与所提出的算法相结合,以提高分类准确性并减少处理时间,从而消除梯度饱和问题并最大程度地减少数据失衡的负面影响,这对二元性情绪问题证明了。结果表明,所提出的解决方案在不同的数据方案和不同的审核类型中实现了更好的分类性能。所提出的模型花费更少的收敛时间来实现模型优化,而七个时期平均为11.5个时期的当前收敛时间。提出的解决方案提高了准确性并减少了文本情感分类的处理时间。该解决方案的平均类准确度为96.63%,而当前平均准确度为91.56%。与当前33.2毫秒的平均处理时间相比,它还提供了23.3毫秒的处理时间。最后,这项研究解决了梯度饱和度和数据失衡的问题。它提高了总体平均水平准确性并减少处理时间。

Accurate emotion classification for online reviews is vital for business organizations to gain deeper insights into markets. Although deep learning has been successfully implemented in this area, accuracy and processing time are still major problems preventing it from reaching its full potential. This paper proposes an Enhanced Leaky Rectified Linear Unit activation and Weighted Loss (ELReLUWL) algorithm for enhanced text emotion classification and faster parameter convergence speed. This algorithm includes the definition of the inflection point and the slope for inputs on the left side of the inflection point to avoid gradient saturation. It also considers the weight of samples belonging to each class to compensate for the influence of data imbalance. Convolutional Neural Network (CNN) combined with the proposed algorithm to increase the classification accuracy and decrease the processing time by eliminating the gradient saturation problem and minimizing the negative effect of data imbalance, demonstrated on a binary sentiment problem. The results show that the proposed solution achieves better classification performance in different data scenarios and different review types. The proposed model takes less convergence time to achieve model optimization with seven epochs against the current convergence time of 11.5 epochs on average. The proposed solution improves accuracy and reduces the processing time of text emotion classification. The solution provides an average class accuracy of 96.63% against a current average accuracy of 91.56%. It also provides a processing time of 23.3 milliseconds compared to the current average processing time of 33.2 milliseconds. Finally, this study solves the issues of gradient saturation and data imbalance. It enhances overall average class accuracy and decreases processing time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源