论文标题

量子神经网络力场生成

Quantum neural networks force fields generation

论文作者

Kiss, Oriel, Tacchino, Francesco, Vallecorsa, Sofia, Tavernelli, Ivano

论文摘要

准确的分子力场对于在大尺度上有效实施分子动力学技术至关重要。在过去的十年中,机器学习方法表现出令人印象深刻的性能,可以预测用从头算技术生成的有限尺寸合奏进行训练的能量和力的准确值。同时,量子计算机最近开始提供新的可行计算范式来解决此类问题。一方面,量子算法可能明显用于扩展电子结构计算的范围。另一方面,Quantum机器学习也正在成为量子优势的替代途径。在这里,我们遵循第二条途径,并在学习神经网络电位的经典和量子解决方案之间建立直接联系。为此,我们设计了一个量子神经网络结构,并将其成功应用于日益复杂的不同分子。量子模型相对于经典的对应物显示出更大的有效维度,并且可以达到竞争性表演,从而指出了通过量子机学习在自然科学应用中的潜在量子优势。

Accurate molecular force fields are of paramount importance for the efficient implementation of molecular dynamics techniques at large scales. In the last decade, machine learning methods have demonstrated impressive performances in predicting accurate values for energy and forces when trained on finite size ensembles generated with ab initio techniques. At the same time, quantum computers have recently started to offer new viable computational paradigms to tackle such problems. On the one hand, quantum algorithms may notably be used to extend the reach of electronic structure calculations. On the other hand, quantum machine learning is also emerging as an alternative and promising path to quantum advantage. Here we follow this second route and establish a direct connection between classical and quantum solutions for learning neural network potentials. To this end, we design a quantum neural network architecture and apply it successfully to different molecules of growing complexity. The quantum models exhibit larger effective dimension with respect to classical counterparts and can reach competitive performances, thus pointing towards potential quantum advantages in natural science applications via quantum machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源