论文标题

有效地计算复杂系统的激发:在隐式溶剂中,线性缩放时间依赖时间嵌入的平均场理论

Efficiently computing excitations of complex systems: linear-scaling time-dependent embedded mean-field theory in implicit solvent

论文作者

Prentice, Joseph C. A.

论文摘要

量子嵌入方案有可能显着降低第一原理计算的计算成本,同时保持准确性,尤其是对于复杂系统中电子激发的计算。在这项工作中,我将依赖时间嵌入的平均场理论(TD-EMFT)与线性尺度密度功能理论和隐式溶剂化模型相结合,从而在Onetep代码中扩展了先前的工作。这提供了一种在非常大的系统上对电子激发进行多层次计算的方法,在大型系统上,量子和经典的远程环境效应本质上都很重要。我通过在各种系统上进行模拟,包括分子二聚体,溶液中的发色团和掺杂的分子晶体来证明这种方法的功能。这项工作为高精度计算的方式铺平了道路,以在以前超出量子嵌入方案范围的大规模系统上进行。

Quantum embedding schemes have the potential to significantly reduce the computational cost of first principles calculations, whilst maintaining accuracy, particularly for calculations of electronic excitations in complex systems. In this work, I combine time-dependent embedded mean field theory (TD-EMFT) with linear-scaling density functional theory and implicit solvation models, extending previous work within the ONETEP code. This provides a way to perform multi-level calculations of electronic excitations on very large systems, where long-range environmental effects, both quantum and classical in nature, are important. I demonstrate the power of this method by performing simulations on a variety of systems, including a molecular dimer, a chromophore in solution, and a doped molecular crystal. This work paves the way for high accuracy calculations to be performed on large-scale systems that were previously beyond the reach of quantum embedding schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源