论文标题

关于角色动画中强化学习方法的调查

A Survey on Reinforcement Learning Methods in Character Animation

论文作者

Kwiatkowski, Ariel, Alvarado, Eduardo, Kalogeiton, Vicky, Liu, C. Karen, Pettré, Julien, van de Panne, Michiel, Cani, Marie-Paule

论文摘要

强化学习是机器学习的一个领域,重点是如何培训代理以做出顺序决策,并在任意环境中实现特定目标。在学习期间,他们会根据对环境的观察一再采取行动,并获得适当的奖励来定义目标。然后,这种经验被用来逐步改善控制代理行为的策略,通常由神经网络表示。然后可以将此训练有素的模块重复用于类似的问题,这使这种方法有望在模拟器,视频游戏或虚拟现实环境中的自主性,反应性角色的动画中有望。本文调查了现代的深入强化学习方法,并讨论了它们在角色动画中的可能应用,从对单个基于物理的角色的骨骼控制到单个代理和虚拟人群的导航控制器。它还描述了训练DRL系统的实际方面,并比较了可用于构建此类代理的不同框架。

Reinforcement Learning is an area of Machine Learning focused on how agents can be trained to make sequential decisions, and achieve a particular goal within an arbitrary environment. While learning, they repeatedly take actions based on their observation of the environment, and receive appropriate rewards which define the objective. This experience is then used to progressively improve the policy controlling the agent's behavior, typically represented by a neural network. This trained module can then be reused for similar problems, which makes this approach promising for the animation of autonomous, yet reactive characters in simulators, video games or virtual reality environments. This paper surveys the modern Deep Reinforcement Learning methods and discusses their possible applications in Character Animation, from skeletal control of a single, physically-based character to navigation controllers for individual agents and virtual crowds. It also describes the practical side of training DRL systems, comparing the different frameworks available to build such agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源