论文标题

ModDrop ++:一个动态滤波器网络,具有内部受试者共同训练,用于多发性硬化病变分割,缺失模态

ModDrop++: A Dynamic Filter Network with Intra-subject Co-training for Multiple Sclerosis Lesion Segmentation with Missing Modalities

论文作者

Liu, Han, Fan, Yubo, Li, Hao, Wang, Jiacheng, Hu, Dewei, Cui, Can, Lee, Ho Hin, Zhang, Huahong, Oguz, Ipek

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Multiple Sclerosis (MS) is a chronic neuroinflammatory disease and multi-modality MRIs are routinely used to monitor MS lesions. Many automatic MS lesion segmentation models have been developed and have reached human-level performance. However, most established methods assume the MRI modalities used during training are also available during testing, which is not guaranteed in clinical practice. Previously, a training strategy termed Modality Dropout (ModDrop) has been applied to MS lesion segmentation to achieve the state-of-the-art performance with missing modality. In this paper, we present a novel method dubbed ModDrop++ to train a unified network adaptive to an arbitrary number of input MRI sequences. ModDrop++ upgrades the main idea of ModDrop in two key ways. First, we devise a plug-and-play dynamic head and adopt a filter scaling strategy to improve the expressiveness of the network. Second, we design a co-training strategy to leverage the intra-subject relation between full modality and missing modality. Specifically, the intra-subject co-training strategy aims to guide the dynamic head to generate similar feature representations between the full- and missing-modality data from the same subject. We use two public MS datasets to show the superiority of ModDrop++. Source code and trained models are available at https://github.com/han-liu/ModDropPlusPlus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源