论文标题
一类梯度型准线性椭圆系统的非平凡解决方案
Nontrivial solutions for a class of gradient-type quasilinear elliptic systems
论文作者
论文摘要
本文的目的是调查梯度型QuasilIrinear椭圆形系统$$(P)\ qquad \ left \ left \ {\ begin {array} {ll} {\ rm div}(a_i(a_i(x,x,U_I,U_I ___i) + _i a) + a_i { \ nabla u_i)= g_i(x,x,\ mathbf {u})&\ hbox {in $ω$} \\ quad \ qquad \ qquad \ qquad \ qquad \ qquad \ qquad \ qquad \ qquad \ mbox \ mbox {for} \ for} \; i \ in \ {1,\ dots,m \},\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ { $ω\ subset \ mathbb {r}^n $是一个开放式界面域和某些函数$ a_i:ω\ times \ times \ times \ mathbb {r} \ times \ times \ times \ mathbb {r}^n \ rightarrow \ rightarrow \ rightArrow \ rightArrow \ rythbb {r} $ g:ω\ times \ mathbb {r}^m \ rightarrow \ mathbb {r} $存在使得$ a_i(x,x,t,t,ξ)= \nabla_ξa_i(x,x,t,t,t,取) (x,t,ξ)$和$ g_ {i}(x,x,\ mathbf {u})= \ frac {\ partial g} {\ partial u_i}(x,x,\ mathbf {u})$。我们证明,在适当的假设下,与问题$(p)$相关的功能性$ \ MATHCAL {J} $是$ \ Mathcal {C}^1 $上的“好” Banach Space $ X $,并满足弱的Cerami-Palais-smale条件。然后,山间通过定理的广义版本使我们能够证明至少一个临界点,如果$ \ nathcal {j} $甚至是无限的许多关键点。
The aim of this paper is investigating the existence of weak bounded solutions of the gradient-type quasilinear elliptic system $$(P)\qquad \left\{ \begin{array}{ll} - {\rm div} ( a_i(x, u_i, \nabla u_i) ) + A_{i, t} (x, u_i, \nabla u_i) = G_i(x, \mathbf{u}) &\hbox{ in $Ω$}\\ \quad\qquad\qquad\qquad\qquad \mbox{ for }\; i\in\{1,\dots,m\},\\ \mathbf{u} = 0 &\hbox{ on $\partialΩ$,} \end{array} \right.$$ with $m\geq 2$ and $\mathbf{u}=(u_1,\dots, u_{m})$, where $Ω\subset\mathbb{R}^N$ is an open bounded domain and some functions $A_i:Ω\times\mathbb{R} \times \mathbb{R}^N\rightarrow\mathbb{R}$, $i\in\{1,\dots,m\}$, and $G:Ω\times\mathbb{R}^m\rightarrow\mathbb{R}$ exist such that $a_i(x,t,ξ) = \nabla_ξ A_i(x,t,ξ)$, $A_{i, t} (x,t,ξ) = \frac{\partial A_i}{\partial t} (x,t,ξ)$ and $G_{i}(x,\mathbf{u}) = \frac{\partial G}{\partial u_i}(x,\mathbf{u})$. We prove that, under suitable hypotheses, the functional $\mathcal{J}$ related to problem $(P)$ is $\mathcal{C}^1$ on a "good" Banach space $X$ and satisfies the weak Cerami-Palais-Smale condition. Then, generalized versions of the Mountain Pass Theorems allow us to prove the existence of at least one critical point and, if $\mathcal{J}$ is even, of infinitely many ones, too.