论文标题

通过洗牌样式组件的域概括,用于抗烟。

Domain Generalization via Shuffled Style Assembly for Face Anti-Spoofing

论文作者

Wang, Zhuo, Wang, Zezheng, Yu, Zitong, Deng, Weihong, Li, Jiahong, Gao, Tingting, Wang, Zhongyuan

论文摘要

随着持续出现的各种表现攻击,可概括的面部反欺骗(FAS)引起了人们的关注。大多数现有方法在完整表示上实现域概括(DG)。但是,不同的图像统计信息可能具有针对FAS任务的独特属性。在这项工作中,我们将完整的表示形式分为内容和样式。提出了一种新型的洗牌样式组装网络(SSAN),以提取和重新组装不同的内容和样式特征,以实现风格化的特征空间。然后,为了获得广泛的表示形式,制定了一种对比性学习策略,以强调与LINICICS相关的样式信息,同时抑制特定于领域的信息。最后,正确的组件的表示形式用于区分推断过程中的生活和欺骗。另一方面,尽管表现不错,但由于数据数量和分布的差异,学术界和行业之间仍然存在差距。因此,为FAS建立了一个新的大规模基准,以进一步评估现实中算法的性能。对现有基准和拟议基准的定性和定量结果都证明了我们方法的有效性。这些代码将在https://github.com/wangzhuo2019/ssan上找到。

With diverse presentation attacks emerging continually, generalizable face anti-spoofing (FAS) has drawn growing attention. Most existing methods implement domain generalization (DG) on the complete representations. However, different image statistics may have unique properties for the FAS tasks. In this work, we separate the complete representation into content and style ones. A novel Shuffled Style Assembly Network (SSAN) is proposed to extract and reassemble different content and style features for a stylized feature space. Then, to obtain a generalized representation, a contrastive learning strategy is developed to emphasize liveness-related style information while suppress the domain-specific one. Finally, the representations of the correct assemblies are used to distinguish between living and spoofing during the inferring. On the other hand, despite the decent performance, there still exists a gap between academia and industry, due to the difference in data quantity and distribution. Thus, a new large-scale benchmark for FAS is built up to further evaluate the performance of algorithms in reality. Both qualitative and quantitative results on existing and proposed benchmarks demonstrate the effectiveness of our methods. The codes will be available at https://github.com/wangzhuo2019/SSAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源