论文标题
基于机器学习的毫米波型波浪设计与离散相位变速器的通信
Machine Learning-based Beamforming Design for Millimeter Wave IRS Communications with Discrete Phase Shifters
论文作者
论文摘要
在本文中,我们研究了一个智能反射表面(IRS)辅助毫米波多输入单输出下行无线通信系统。通过共同计算基站的主动波束形成和IRS的被动横梁成形,我们的目标是最大程度地减少每个用户的信号与互换额噪声比率的限制下的发射功率。为了解决这个问题,我们提出了一个基于低复杂机的跨凝结算法(CE)算法,以交替优化主动波束形成和被动光束。具体而言,在替代迭代过程中,将零强度(ZF)方法和CE算法分别用于获取主动波束形成和被动边界。 CE算法从随机抽样开始,通过焦点分布的想法,即通过最大程度地减少CE将分布转移到所需的分布,并且可以获得具有足够高概率的接近最佳反射系数。此外,我们将原始的一位一位移位扩展到了IRS的原始情况,并具有高分辨率相移以增强算法的有效性。仿真结果验证了所提出的算法可以获得具有较低计算复杂性的几乎最佳解决方案。
In this paper, we investigate an intelligent reflecting surface (IRS)-assisted millimeter-wave multiple-input single-output downlink wireless communication system. By jointly calculating the active beamforming at the base station and the passive beamforming at the IRS, we aim to minimize the transmit power under the constraint of each user' signal-to-interference-plus-noise ratio. To solve this problem, we propose a low-complexity machine learning-based cross-entropy (CE) algorithm to alternately optimize the active beamforming and the passive beamforming. Specifically, in the alternative iteration process, the zero-forcing (ZF) method and CE algorithm are applied to acquire the active beamforming and the passive beamforming, respectively. The CE algorithm starts with random sampling, by the idea of distribution focusing, namely shifting the distribution towards a desired one by minimizing CE, and a near optimal reflection coefficients with adequately high probability can be obtained. In addition, we extend the original one-bit phase shift at the IRS to the common case with high-resolution phase shift to enhance the effectiveness of the algorithms. Simulation results verify that the proposed algorithm can obtain a near optimal solution with lower computational complexity.