论文标题

与两个耦合的伪相关的Hartree方程相关的约束最小化问题

A constrained minimization problem related to two coupled pseudo-relativistic Hartree equations

论文作者

Wang, Wenqing, Zeng, Xiaoyu, Zhou, Huan-Song

论文摘要

我们关注以下约束最小化问题:$$ e(a_ {1},a_ {2},β):= \ inf \ left \ left \ {e_ {a_ {1},a_ {2},β},β},β}(u_ {1},u_ {2},U_ {2}),U_ {2}): \ | U_ {1} \ | _ {l^{2}(\ Mathbb {r}^{3})} = \ | U_ {2} \ | _ {l^{2}} $ e_ {a_ {1},a_ {2},β} $是与两个耦合的伪偏移的hartree方程相关的能量功能,涉及三个参数$ a_ {1},a_ {1},a_ {2},β$和两个诱捕潜力$ v_1(x)$ v_1 $ v_1 $和$ v_2(x)$ v_2(x)$ v_2(x2(x))$ v_2(x)。在本文中,我们获得了$ e(a_ {1},a_ {2},β)$的最小化,以$ a_ {1},a_ {2} $和$β$在适当条件下的潜力条件下,这在不同的感觉上概括了[16,17,18]。

We are concerned with the following constrained minimization problem: $$e(a_{1},a_{2},β) := \inf\left\{E_{a_{1},a_{2},β}(u_{1},u_{2}): \|u_{1}\|_{L^{2}(\mathbb{R}^{3})} = \|u_{2}\|_{L^{2}(\mathbb{R}^{3})} = 1\right\},$$ where $E_{a_{1},a_{2},β}$ is the energy functional associated to two coupled pseudo-relativistic Hartree equations involving three parameters $a_{1}, a_{2}, β$ and two trapping potentials $V_1(x)$ and $V_2(x)$. In this paper, we obtain the existence of minimizers of $e(a_{1},a_{2},β)$ for possible $a_{1}, a_{2}$ and $β$ under suitable conditions on the potentials, which generalizes the results of the papers [16,17,18] in different senses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源