论文标题
机器人触觉勘探的基于自我调节的阻抗互动计划
A Self-Tuning Impedance-based Interaction Planner for Robotic Haptic Exploration
论文作者
论文摘要
本文提出了一种新颖的交互计划方法,该方法仅使用触觉信息来利用阻抗调谐技术,以应对环境不确定性和不可预测的条件。拟议的算法根据与环境的触觉互动并根据需要调整计划策略的效果计划。考虑了两种方法:探索和弹跳策略。勘探策略将机器人的实际运动考虑在计划中,而弹跳策略则利用了机器人的力量和运动向量。此外,根据计划的轨迹进行自我调整阻抗,以确保合规性接触和低接触力。为了显示所提出的方法的性能,进行了两个具有扭矩控制器机器人臂的实验。第一个认为没有障碍的迷宫探索,而第二个包括障碍。在两种情况下,分析了提出的方法性能并与先前提出的解决方案进行比较。实验结果表明:i)机器人可以根据与环境的相互作用在最可行的方向上成功地计划其轨迹,ii)尽管达到了不确定性,但与未知环境的合规性相互作用。最后,进行了可伸缩性演示,以显示在多种情况下提出的方法的潜力。
This paper presents a novel interaction planning method that exploits impedance tuning techniques in response to environmental uncertainties and unpredictable conditions using haptic information only. The proposed algorithm plans the robot's trajectory based on the haptic interaction with the environment and adapts planning strategies as needed. Two approaches are considered: Exploration and Bouncing strategies. The Exploration strategy takes the actual motion of the robot into account in planning, while the Bouncing strategy exploits the forces and the motion vector of the robot. Moreover, self-tuning impedance is performed according to the planned trajectory to ensure compliant contact and low contact forces. In order to show the performance of the proposed methodology, two experiments with a torque-controller robotic arm are carried out. The first considers a maze exploration without obstacles, whereas the second includes obstacles. The proposed method performance is analyzed and compared against previously proposed solutions in both cases. Experimental results demonstrate that: i) the robot can successfully plan its trajectory autonomously in the most feasible direction according to the interaction with the environment, and ii) a compliant interaction with an unknown environment despite the uncertainties is achieved. Finally, a scalability demonstration is carried out to show the potential of the proposed method under multiple scenarios.