论文标题

AGCN:用于终身多标签图像识别的增强图卷积网络

AGCN: Augmented Graph Convolutional Network for Lifelong Multi-label Image Recognition

论文作者

Du, Kaile, Lyu, Fan, Hu, Fuyuan, Li, Linyan, Feng, Wei, Xu, Fenglei, Fu, Qiming

论文摘要

终身多标签(LML)图像识别在连续的多标签图像识别数据流中构建了在线类式分类器。 LML图像识别的主要挑战是在训练数据的部分标签和旧阶层的灾难性遗忘上建立标签关系,导致概括不佳。为了解决问题,研究提出了一个增强图卷积网络(AGCN)模型,该模型可以在顺序识别任务中构建标签关系并维持灾难性的遗忘。首先,我们在所有可见的类中构建一个增强的相关矩阵(ACM),其中任务的关系来自硬标签统计信息,而任务跨任务的关系则利用了数据和构造的专家网络的硬和软标签。然后,基于ACM,所提出的AGCN捕获具有动态增强结构的标签依赖性,并产生有效的类表示。最后,为了抑制在旧任务中忘记标签依赖性的遗忘,我们提出了一种保留关系的损失,以限制标签关系的构建。使用两个多标签图像基准评估所提出的方法,实验结果表明,该方法对LML图像识别有效,即使缺少先前任务的标签,也可以在任务之间建立令人信服的相关性。我们的代码可在https://github.com/kaile-du/agcn上找到。

The Lifelong Multi-Label (LML) image recognition builds an online class-incremental classifier in a sequential multi-label image recognition data stream. The key challenges of LML image recognition are the construction of label relationships on Partial Labels of training data and the Catastrophic Forgetting on old classes, resulting in poor generalization. To solve the problems, the study proposes an Augmented Graph Convolutional Network (AGCN) model that can construct the label relationships across the sequential recognition tasks and sustain the catastrophic forgetting. First, we build an Augmented Correlation Matrix (ACM) across all seen classes, where the intra-task relationships derive from the hard label statistics while the inter-task relationships leverage both hard and soft labels from data and a constructed expert network. Then, based on the ACM, the proposed AGCN captures label dependencies with dynamic augmented structure and yields effective class representations. Last, to suppress the forgetting of label dependencies across old tasks, we propose a relationship-preserving loss as a constraint to the construction of label relationships. The proposed method is evaluated using two multi-label image benchmarks and the experimental results show that the proposed method is effective for LML image recognition and can build convincing correlation across tasks even if the labels of previous tasks are missing. Our code is available at https://github.com/Kaile-Du/AGCN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源