论文标题

将表示形式转移到视频标签传播:实施因素很重要

Transfer of Representations to Video Label Propagation: Implementation Factors Matter

论文作者

McKee, Daniel, Zhan, Zitong, Shuai, Bing, Modolo, Davide, Tighe, Joseph, Lazebnik, Svetlana

论文摘要

该工作研究具有视频中致密标签传播的表示形式,重点是最近提出的方法,这些方法使用自我监督信号(例如着色或时间周期一致性)学习视频对应。在文献中,这些方法已经通过一系列不一致的设置进行了评估,因此很难辨别趋势或公平地比较性能。从包含大多数现有变化的标签传播算法的统一配方开始,我们系统地研究了重要的实施因子在特征提取和标签传播中的影响。一路上,我们报告了正确调整的监督和无监督的静止图像基线的准确性,这些基线高于以前的作品中的准确性。我们还证明,以基于图像的基础图形增强基于视频的对应线索可以进一步提高性能。然后,我们尝试对戴维斯基准测试的最新基于视频的方法进行公平的比较,尽管使用了各种基于视频的专业损失和培训细节,但表明了最佳方法与我们强大的成像网基线附近的最佳性能水平的融合。关于JHMDB和VIP数据集的其他比较确认了当前方法的相似性能。我们希望这项研究将有助于改善评估实践,并更好地为未来的时间通信研究指示提供信息。

This work studies feature representations for dense label propagation in video, with a focus on recently proposed methods that learn video correspondence using self-supervised signals such as colorization or temporal cycle consistency. In the literature, these methods have been evaluated with an array of inconsistent settings, making it difficult to discern trends or compare performance fairly. Starting with a unified formulation of the label propagation algorithm that encompasses most existing variations, we systematically study the impact of important implementation factors in feature extraction and label propagation. Along the way, we report the accuracies of properly tuned supervised and unsupervised still image baselines, which are higher than those found in previous works. We also demonstrate that augmenting video-based correspondence cues with still-image-based ones can further improve performance. We then attempt a fair comparison of recent video-based methods on the DAVIS benchmark, showing convergence of best methods to performance levels near our strong ImageNet baseline, despite the usage of a variety of specialized video-based losses and training particulars. Additional comparisons on JHMDB and VIP datasets confirm the similar performance of current methods. We hope that this study will help to improve evaluation practices and better inform future research directions in temporal correspondence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源