论文标题

Linna:可能性推理神经网络加速器

LINNA: Likelihood Inference Neural Network Accelerator

论文作者

To, Chun-Hao, Rozo, Eduardo, Krause, Elisabeth, Wu, Hao-Yi, Wechsler, Risa H., Salcedo, Andrés N.

论文摘要

贝叶斯的后验推断现代多探针宇宙学分析会带来巨大的计算成本。例如,根据探针的组合,暗能量调查(DES)数据的单个后验推断的壁式时间为1到21天,使用了100个核心的最先进的计算集群。这些计算成本具有严重的环境影响,并且较长的墙壁锁定时间减慢了科学生产力。为了解决这些困难,我们介绍了Linna:可能性推理神经网络加速器。相对于基线DES分析,Linna将与后推断相关的计算成本降低了8--50倍。如果应用于鲁宾天文台对时空的传统调查(LSST Y1)的第一年宇宙学分析,我们保守地估计,林纳将节省超过$ 300,000的能源成本,同时减少$ \ rm {co} _2 _2 _2 $ $ 2,400 $ 2,400美元。为了实现这些减少,Linna会自动构建训练数据集,创建神经网络替代模型,并产生一个Markov链,以样品进行后方样品。我们明确验证了Linna是否准确地重现了使用我们默认的代码设置的各种不同数据向量得出的第一年DES(DES Y1)宇宙学约束,而无需每次重新调整算法。此外,我们发现LINNA足以为LSST Y10多探针分析提供准确有效的采样。我们在https://github.com/chto/linna上公开提供Linna,以使其他人在当代宇宙学分析中能够快速准确地进行后验推断。

Bayesian posterior inference of modern multi-probe cosmological analyses incurs massive computational costs. For instance, depending on the combinations of probes, a single posterior inference for the Dark Energy Survey (DES) data had a wall-clock time that ranged from 1 to 21 days using a state-of-the-art computing cluster with 100 cores. These computational costs have severe environmental impacts and the long wall-clock time slows scientific productivity. To address these difficulties, we introduce LINNA: the Likelihood Inference Neural Network Accelerator. Relative to the baseline DES analyses, LINNA reduces the computational cost associated with posterior inference by a factor of 8--50. If applied to the first-year cosmological analysis of Rubin Observatory's Legacy Survey of Space and Time (LSST Y1), we conservatively estimate that LINNA will save more than US $\$300,000$ on energy costs, while simultaneously reducing $\rm{CO}_2$ emission by $2,400$ tons. To accomplish these reductions, LINNA automatically builds training data sets, creates neural network surrogate models, and produces a Markov chain that samples the posterior. We explicitly verify that LINNA accurately reproduces the first-year DES (DES Y1) cosmological constraints derived from a variety of different data vectors with our default code settings, without needing to retune the algorithm every time. Further, we find that LINNA is sufficient for enabling accurate and efficient sampling for LSST Y10 multi-probe analyses. We make LINNA publicly available at https://github.com/chto/linna, to enable others to perform fast and accurate posterior inference in contemporary cosmological analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源