论文标题
几何综合:大规模棕榈印刷识别模型的免费午餐
Geometric Synthesis: A Free lunch for Large-scale Palmprint Recognition Model Pretraining
论文作者
论文摘要
掌刻是用于生物识别的私人和稳定信息。在深度学习时代,掌上印刷识别的发展受到缺乏足够的培训数据的限制。在本文中,通过观察手掌折痕是基于深度学习的掌上识别的关键信息,我们建议通过操纵手掌折痕来合成训练数据。具体来说,我们引入了一个直观的几何模型,该模型代表具有参数化的Bézier曲线的手掌折痕。通过随机采样Bézier参数,我们可以合成各种身份的大规模训练样本,这使我们能够预识大规模的棕榈印刷识别模型。实验结果表明,这种综合预审预周边的模型具有非常强大的概括能力:它们可以有效地转移到真实数据集中,从而在掌上识别识别方面有了显着的性能改善。例如,在开放式协议下,我们的方法就tar@1e-6而言,强街基线的基线提高了10 \%。在封闭式协议下,我们的方法将相等的错误率(EER)降低了一个数量级。
Palmprints are private and stable information for biometric recognition. In the deep learning era, the development of palmprint recognition is limited by the lack of sufficient training data. In this paper, by observing that palmar creases are the key information to deep-learning-based palmprint recognition, we propose to synthesize training data by manipulating palmar creases. Concretely, we introduce an intuitive geometric model which represents palmar creases with parameterized Bézier curves. By randomly sampling Bézier parameters, we can synthesize massive training samples of diverse identities, which enables us to pretrain large-scale palmprint recognition models. Experimental results demonstrate that such synthetically pretrained models have a very strong generalization ability: they can be efficiently transferred to real datasets, leading to significant performance improvements on palmprint recognition. For example, under the open-set protocol, our method improves the strong ArcFace baseline by more than 10\% in terms of TAR@1e-6. And under the closed-set protocol, our method reduces the equal error rate (EER) by an order of magnitude.