论文标题
使用最佳传输和软对齐方式平均时空信号
Averaging Spatio-temporal Signals using Optimal Transport and Soft Alignments
论文作者
论文摘要
从基因组学到神经影像学的科学领域的几个领域都需要监测随时间发展的人群(度量)。这些复杂的数据集描述了时间和空间组件的动态,对数据分析提出了新的挑战。我们在这项工作中提出了一个新的框架,以进行平均这些数据集,目的是从多个轨迹中综合代表模板轨迹。我们表明,这需要解决三种不变性来源:时间,空间和总人口大小(或质量/振幅)的变化。在这里,我们从动态时间扭曲(DTW),最佳运输(OT)理论及其不平衡扩展(UOT)中汲取灵感,以提出一个可以解决所有三个问题的标准。该提案利用DTW(软dtw)的平滑公式,该公式显示出捕获时间变化的,并且可以处理空间和大小的两种变化。我们提出的损失可用于将时空的重中心定义为fréchet手段。使用Fenchel二元性,我们展示了如何通过熵调查的DEBIAS的新型变体并同行计算这些barycenter。手写字母和脑成像数据的实验证实了我们的理论发现,并说明了拟议损失对时空数据的有效性。
Several fields in science, from genomics to neuroimaging, require monitoring populations (measures) that evolve with time. These complex datasets, describing dynamics with both time and spatial components, pose new challenges for data analysis. We propose in this work a new framework to carry out averaging of these datasets, with the goal of synthesizing a representative template trajectory from multiple trajectories. We show that this requires addressing three sources of invariance: shifts in time, space, and total population size (or mass/amplitude). Here we draw inspiration from dynamic time warping (DTW), optimal transport (OT) theory and its unbalanced extension (UOT) to propose a criterion that can address all three issues. This proposal leverages a smooth formulation of DTW (Soft-DTW) that is shown to capture temporal shifts, and UOT to handle both variations in space and size. Our proposed loss can be used to define spatio-temporal barycenters as Fréchet means. Using Fenchel duality, we show how these barycenters can be computed efficiently, in parallel, via a novel variant of entropy-regularized debiased UOT. Experiments on handwritten letters and brain imaging data confirm our theoretical findings and illustrate the effectiveness of the proposed loss for spatio-temporal data.