论文标题
Qbold MRI的柔性摊销变异推断
Flexible Amortized Variational Inference in qBOLD MRI
论文作者
论文摘要
简化的Qbold采集使脑氧代谢的实验直接观察能够实现直接的观察。 $ r_2^\ prime $映射很容易推断;但是,从数据中更明确地确定了氧气提取分数(OEF)和脱氧血容量(DBV)。因此,现有的推论方法倾向于产生非常嘈杂的OEF图,而高估了DBV。 这项工作描述了一种新型的概率机器学习方法,可以推断OEF和DBV的合理分布。最初,我们创建了一个模型,该模型基于合成训练数据,可以产生信息丰富的VoxelWise先验分布。与先前的工作相反,我们通过缩放的多元logit正态分布对OEF和DBV的关节分布进行建模,这使得值可以在合理的范围内约束。先前的分布模型用于训练有效的摊销变异贝叶斯推理模型。该模型通过使用信号方程作为正向模型来预测实际图像数据(几乎不需要的训练数据)来学会推断OEF和DBV。 我们证明了我们的方法可以推断出平滑的OEF和DBV图,并具有生理上合理的分布,可以通过规范提供信息的先验分布来调整。其他好处包括模型比较(通过证据下限)和识别图像伪像的不确定性定量。在一项小型研究中证明了结果,该研究比较接受过度换气和休息的受试者。我们说明所提出的方法允许测量OEF和DBV中的灰质差异,并可以在条件之间进行voxelwise比较,在这种情况下,我们观察到OEF和$ r_2^\ prime $在过度换气过程中显着增加。
Streamlined qBOLD acquisitions enable experimentally straightforward observations of brain oxygen metabolism. $R_2^\prime$ maps are easily inferred; however, the Oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) are more ambiguously determined from the data. As such, existing inference methods tend to yield very noisy and underestimated OEF maps, while overestimating DBV. This work describes a novel probabilistic machine learning approach that can infer plausible distributions of OEF and DBV. Initially, we create a model that produces informative voxelwise prior distribution based on synthetic training data. Contrary to prior work, we model the joint distribution of OEF and DBV through a scaled multivariate logit-Normal distribution, which enables the values to be constrained within a plausible range. The prior distribution model is used to train an efficient amortized variational Bayesian inference model. This model learns to infer OEF and DBV by predicting real image data, with few training data required, using the signal equations as a forward model. We demonstrate that our approach enables the inference of smooth OEF and DBV maps, with a physiologically plausible distribution that can be adapted through specification of an informative prior distribution. Other benefits include model comparison (via the evidence lower bound) and uncertainty quantification for identifying image artefacts. Results are demonstrated on a small study comparing subjects undergoing hyperventilation and at rest. We illustrate that the proposed approach allows measurement of gray matter differences in OEF and DBV and enables voxelwise comparison between conditions, where we observe significant increases in OEF and $R_2^\prime$ during hyperventilation.