论文标题
CNN辅助因子图具有估计的共同信息特征以进行癫痫发作
CNN-Aided Factor Graphs with Estimated Mutual Information Features for Seizure Detection
论文作者
论文摘要
我们提出了卷积神经网络(CNN)辅助因子图,该因子图由由神经网络估计的癫痫发作检测估计的相互信息特征辅助。具体而言,我们使用神经相互信息估计来评估不同脑电图(EEG)通道之间的相关性作为特征。然后,我们使用1D-CNN从EEG信号中提取额外的功能,并使用这两个功能来估计癫痫发作事件的可能性。来自神经相互估计和1D-CNN的两组特征都用于学习因子节点。我们表明,所提出的方法使用6倍4倍的患者交叉验证实现了最先进的绩效。
We propose a convolutional neural network (CNN) aided factor graphs assisted by mutual information features estimated by a neural network for seizure detection. Specifically, we use neural mutual information estimation to evaluate the correlation between different electroencephalogram (EEG) channels as features. We then use a 1D-CNN to extract extra features from the EEG signals and use both features to estimate the probability of a seizure event.~Finally, learned factor graphs are employed to capture the temporal correlation in the signal. Both sets of features from the neural mutual estimation and the 1D-CNN are used to learn the factor nodes. We show that the proposed method achieves state-of-the-art performance using 6-fold leave-four-patients-out cross-validation.