论文标题
整数集合的大谐波总和避免了长时间的算术进程
Integer Sets of Large Harmonic Sum Which Avoid Long Arithmetic Progressions
论文作者
论文摘要
我们提供某些数字限制的整数避免避免$ k $ term arithmetic进程的条件。这些集合可以合理地计算,因此可以进行大规模搜索。我们确定一套没有四个任期的算术进展,谐波和4.43975美元的算术套装,这改善了较早的“贪婪”结构。
We give conditions under which certain digit-restricted integer sets avoid $k$-term arithmetic progressions. These sets are reasonably efficient to compute and therefore enable large-scale search. We identify a set with no arithmetic progression of four terms and with harmonic sum $4.43975$, which improves an earlier "greedy" construction.