论文标题
通过最佳分析预测因子替换神经网络以检测相变
Replacing neural networks by optimal analytical predictors for the detection of phase transitions
论文作者
论文摘要
识别物质的相变和分类阶段对于理解广泛材料系统的特性和行为至关重要。近年来,机器学习(ML)技术已成功应用于以数据驱动方式执行此类任务。但是,尽管如此,我们仍然缺乏对检测相位过渡的ML方法的明确理解,特别是使用神经网络(NNS)的方法。在这项工作中,我们得出了三种基于NN的最佳输出的分析表达式,用于检测相变。这些最佳预测与高模型容量极限获得的结果相对应。因此,在实践中,可以使用足够大的,训练有素的NN来恢复它们。通过最佳输出对输入数据的明确依赖性揭示了所考虑方法的内部工作。通过评估分析表达式,我们可以在没有培训NNS的情况下直接从实验可访问的数据中识别相转换,这使得该过程在计算时间方面有利。我们的理论结果得到了广泛的数值模拟涵盖,例如拓扑,量子和多体定位相变的支持。我们期望类似的分析能够深入了解凝结物理学中其他分类任务。
Identifying phase transitions and classifying phases of matter is central to understanding the properties and behavior of a broad range of material systems. In recent years, machine-learning (ML) techniques have been successfully applied to perform such tasks in a data-driven manner. However, the success of this approach notwithstanding, we still lack a clear understanding of ML methods for detecting phase transitions, particularly of those that utilize neural networks (NNs). In this work, we derive analytical expressions for the optimal output of three widely used NN-based methods for detecting phase transitions. These optimal predictions correspond to the results obtained in the limit of high model capacity. Therefore, in practice they can, for example, be recovered using sufficiently large, well-trained NNs. The inner workings of the considered methods are revealed through the explicit dependence of the optimal output on the input data. By evaluating the analytical expressions, we can identify phase transitions directly from experimentally accessible data without training NNs, which makes this procedure favorable in terms of computation time. Our theoretical results are supported by extensive numerical simulations covering, e.g., topological, quantum, and many-body localization phase transitions. We expect similar analyses to provide a deeper understanding of other classification tasks in condensed matter physics.