论文标题
帕累托最优性,经济效果权衡和离子渠道退化:改善神经元的人口模型
Pareto optimality, economy-effectiveness trade-offs and ion channel degeneracy: Improving population models of neurons
论文作者
论文摘要
神经细胞在多个任务之间遇到不可避免的进化权衡。他们必须消耗尽可能少的能量(能节能或经济),但同时履行其功能(在功能上有效)。据说表现出最佳性能的神经元表现出最佳性能,据说是帕累托的最佳选择。但是,尚不清楚离子通道参数如何促进神经元的最佳性能。离子通道退化意味着离子通道参数的多种组合可以导致功能相似的神经元行为。因此,为了模拟功能行为,神经科学家通常使用具有不同离子电导配置的有效模型的种群。这种方法称为种群(也称数据库或集合)建模。目前尚不清楚,在大脑中更有可能在大量功能模型中找到哪些离子通道参数。在这里,我们建议帕累托最优性可以作为解决此问题的指导原则。 Pareto最佳概念可以帮助识别具有离子频道配置的基于电导模型的亚群,这些模型最适合经济和功能有效性之间的权衡。这样,神经元模型的高维参数空间可能会简化为几何简单的低维歧管。因此,帕累托最优性是改善神经元及其电路人群建模的有前途的框架。我们还讨论了帕累托推论如何有助于从高维补丁序列数据中推断出神经元功能。此外,我们假设帕累托最优性可能有助于我们对观察到的神经元中观察到的离子通道相关性的理解。
Nerve cells encounter unavoidable evolutionary trade-offs between multiple tasks. They must consume as little energy as possible (be energy-efficient or economical) but at the same time fulfil their functions (be functionally effective). Neurons displaying best performance for such multi-task trade-offs are said to be Pareto optimal. However, it is not understood how ion channel parameters contribute to the Pareto optimal performance of neurons. Ion channel degeneracy implies that multiple combinations of ion channel parameters can lead to functionally similar neuronal behavior. Therefore, to simulate functional behavior, instead of a single model, neuroscientists often use populations of valid models with distinct ion conductance configurations. This approach is called population (also database or ensemble) modeling. It remains unclear, which ion channel parameters in a vast population of functional models are more likely to be found in the brain. Here we propose that Pareto optimality can serve as a guiding principle for addressing this issue. The Pareto optimum concept can help identify the subpopulations of conductance-based models with ion channel configurations that perform best for the trade-off between economy and functional effectiveness. In this way, the high-dimensional parameter space of neuronal models might be reduced to geometrically simple low-dimensional manifolds. Therefore, Pareto optimality is a promising framework for improving population modeling of neurons and their circuits. We also discuss how Pareto inference might help deduce neuronal functions from high-dimensional Patch-seq data. Furthermore, we hypothesize that Pareto optimality might contribute to our understanding of observed ion channel correlations in neurons.