论文标题

机器学习的可区分多项式电路类别

Categories of Differentiable Polynomial Circuits for Machine Learning

论文作者

Wilson, Paul, Zanasi, Fabio

论文摘要

反向导数类别(RDC)最近被证明是研究机器学习算法的合适语义框架。尽管重点是培训方法,但较少的关注量投入了特定的\ emph {model类}:形态学代表机器学习模型的具体类别。在本文中,我们研究了发电机和RDC类方程的演讲。特别是,我们将\ emph {多项式电路}作为合适的机器学习模型。我们为这些电路提供了公理化,并证明了功能完整性结果。最后,我们讨论了多项式电路在特定半仪上使用离散值进行机器学习。

Reverse derivative categories (RDCs) have recently been shown to be a suitable semantic framework for studying machine learning algorithms. Whereas emphasis has been put on training methodologies, less attention has been devoted to particular \emph{model classes}: the concrete categories whose morphisms represent machine learning models. In this paper we study presentations by generators and equations of classes of RDCs. In particular, we propose \emph{polynomial circuits} as a suitable machine learning model. We give an axiomatisation for these circuits and prove a functional completeness result. Finally, we discuss the use of polynomial circuits over specific semirings to perform machine learning with discrete values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源