论文标题
关于能源受限的移动机器人的计算能力:算法和跨模型分析
On the Computational Power of Energy-Constrained Mobile Robots: Algorithms and Cross-Model Analysis
论文作者
论文摘要
我们考虑相同的自主计算实体的分布式系统,称为机器人,以同步的外观计算移动(LCM)循环在平面中移动和运行。这些系统的算法能力在文献中已在四个不同的模型(Obot,FSTA,FCOM,Lumi)下进行了广泛研究,每个模型都识别机器人的内存持久性和通信能力的不同级别。尽管有差异,但他们总是认为机器人具有无限的能量。 在本文中,我们删除了这一假设,并开始研究能量有限(尽管可再生)的机器人的计算能力。我们首先研究了记忆持续性和通信能力对这种能源约束机器人系统的计算能力的影响;我们通过分析此能量限制下的四个模型之间的计算关系来做到这一点。我们提供了这种关系的完整表征。 然后,我们研究了由能量限制引起的计算能力差异,并提供了每个模型中能量约束和无限制机器人之间关系的完整表征。我们证明在Lumi中没有区别。证明的一个不可或缺的一部分是对Lumi中允许能量约束机器人在具有无限能量的机器人的任何协议中正确执行任何协议的算法的设计和分析。然后,我们显示(显然是违反直觉的)结果,在所有其他模型中,能量约束实际上为机器人提供了计算优势。
We consider distributed systems of identical autonomous computational entities, called robots, moving and operating in the plane in synchronous Look-Compute-Move (LCM) cycles. The algorithmic capabilities of these systems have been extensively investigated in the literature under four distinct models (OBLOT, FSTA, FCOM, LUMI), each identifying different levels of memory persistence and communication capabilities of the robots. Despite their differences, they all always assume that robots have unlimited amounts of energy. In this paper, we remove this assumption and start the study of the computational capabilities of robots whose energy is limited, albeit renewable. We first study the impact that memory persistence and communication capabilities have on the computational power of such energy-constrained systems of robots; we do so by analyzing the computational relationship between the four models under this energy constraint. We provide a complete characterization of this relationship. We then study the difference in computational power caused by the energy restriction and provide a complete characterization of the relationship between energy-constrained and unrestricted robots in each model. We prove that within LUMI there is no difference; an integral part of the proof is the design and analysis of an algorithm that in LUMI allows energy-constrained robots to execute correctly any protocol for robots with unlimited energy. We then show the (apparently counterintuitive) result that in all other models, the energy constraint actually provides the robots with a computational advantage.