论文标题

纳米薄的bixoysez中的室温氧运输可实现2D材料的精确调制

Room-temperature oxygen transport in nano-thin BixOySez enables precision modulation of 2D materials

论文作者

Hennighausen, Zachariah, Hudak, Bethany M., Phillips, Madeleine, Moon, Jisoo, McCreary, Kathleen M., Chuang, Hsun-Jen, Rosenberger, Matthew R., Jonker, Berend T., Li, Connie H., Stroud, Rhonda M., Erve, Olaf M. van't

论文摘要

氧导体和转运蛋白对包括燃料电池和同性气生产在内的几种可获得的可再生能源技术很重要。另外,单层过渡金属二核苷(TMDS)对一系列应用显示出巨大的希望,包括量子计算,高级传感器,valleytronics和下一代光电。在这里,我们合成了一些纳米厚的比克塞斯化合物,它们非常类似于稀有的R3M氧化物(BI2O3)阶段,并将其与对环境高度敏感的单层TMD相结合。我们使用所得的2D异质结构来研究通过Bixoysez进入层间区域的氧气传输,从而调制了2D材料的特性,从而在激光暴露下发现在室温下在室温下非常快速扩散。氧扩散通过可控制的插入和去除氧对2D材料特性进行可逆和精确的修饰。变化是空间限制的,可以实现亚微米特征(例如像素),并且长期稳定超过221天。我们的工作表明,几乎没有纳米厚的比克塞斯是一种有希望的未开发的室温氧气转运蛋白。此外,我们的发现表明,该机制可以应用于其他2D材料,作为一种通用方法,以高精度和亚微米空间分辨率来操纵其性质。

Oxygen conductors and transporters are important to several consequential renewable energy technologies, including fuel cells and syngas production. Separately, monolayer transition metal dichalcogenides (TMDs) have demonstrated significant promise for a range of applications, including quantum computing, advanced sensors, valleytronics, and next-gen optoelectronics. Here, we synthesize a few nanometer-thick BixOySez compound that strongly resembles a rare R3m bismuth oxide (Bi2O3) phase, and combine it with monolayer TMDs, which are highly sensitive to their environment. We use the resulting 2D heterostructure to study oxygen transport through BixOySez into the interlayer region, whereby the 2D material properties are modulated, finding extraordinarily fast diffusion at room temperature under laser exposure. The oxygen diffusion enables reversible and precise modification of the 2D material properties by controllably intercalating and deintercalating oxygen. Changes are spatially confined, enabling submicron features (e.g. pixels), and are long-term stable for more than 221 days. Our work suggests few nanometer-thick BixOySez is a promising unexplored room-temperature oxygen transporter. Additionally, our findings suggest the mechanism can be applied to other 2D materials as a generalized method to manipulate their properties with high precision and submicron spatial resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源