论文标题
基于移动机器人观察的时空人类活动的非参数建模
Non-Parametric Modeling of Spatio-Temporal Human Activity Based on Mobile Robot Observations
论文作者
论文摘要
这项工作提出了一种非参数时空模型,用于在长期背景下通过移动自主机器人绘制人类活动。基于变异性高斯过程回归,该模型包含了先前的空间和时间周期性依赖性信息,以创建人类事件的连续表示。由机器人运动产生的不均匀数据分布通过异质的可能性函数包括在模型中,可以作为预测性不确定性。使用稀疏的公式,可以在数周内进行数据集,并且可以将数百平方米用于模型创建。基于多周数据集的实验评估表明,所提出的方法在预测质量和随后的路径计划方面都超过了艺术的表现。
This work presents a non-parametric spatio-temporal model for mapping human activity by mobile autonomous robots in a long-term context. Based on Variational Gaussian Process Regression, the model incorporates prior information of spatial and temporal-periodic dependencies to create a continuous representation of human occurrences. The inhomogeneous data distribution resulting from movements of the robot is included in the model via a heteroscedastic likelihood function and can be accounted for as predictive uncertainty. Using a sparse formulation, data sets over multiple weeks and several hundred square meters can be used for model creation. The experimental evaluation, based on multi-week data sets, demonstrates that the proposed approach outperforms the state of the art both in terms of predictive quality and subsequent path planning.