论文标题
机器引导的探索和天体物理模拟的校准
Machine-guided Exploration and Calibration of Astrophysical Simulations
论文作者
论文摘要
我们将一种新颖的方法与机器学习一起使用,以在数值仿真代码中校准子网格模型,以实现与观测和不同代码之间的收敛。它利用主动学习和神经密度估计器。机器的超级参数通过定义明确的弹丸运动问题进行校准。然后,使用一组22个宇宙变焦模拟,我们调整了Enzo中流行的星形形成和反馈模型的参数以匹配模拟。经过调整的参数包括恒星形成效率,恒星反馈的热能耦合以及能量沉积的体积。该数字比手动校准的三个以上改进的倍数。尽管使用了较少的模拟,但我们可以更好地同意乳白色(MW)尺寸的光环的重制。切换到其他策略,我们提高了机器推荐参数的一致性。鉴于校准的成功,我们使用该技术使用孤立的星系在基于网格的基于网格和基于粒子的模拟代码之间调和金属传输。这是对手动探索的改进,同时暗示了光环区域的扩散系数与金属质量之间鲜为人知的关系。用机器学习方法对子网格模型的参数的探索和校准得出的是用途广泛,直接适用于不同的问题。
We apply a novel method with machine learning to calibrate sub-grid models within numerical simulation codes to achieve convergence with observations and between different codes. It utilizes active learning and neural density estimators. The hyper parameters of the machine are calibrated with a well-defined projectile motion problem. Then, using a set of 22 cosmological zoom simulations, we tune the parameters of a popular star formation and feedback model within Enzo to match simulations. The parameters that are adjusted include the star formation efficiency, coupling of thermal energy from stellar feedback, and volume into which the energy is deposited. This number translates to a factor of more than three improvements over manual calibration. Despite using fewer simulations, we obtain a better agreement to the observed baryon makeup of a Milky-Way (MW) sized halo. Switching to a different strategy, we improve the consistency of the recommended parameters from the machine. Given the success of the calibration, we then apply the technique to reconcile metal transport between grid-based and particle-based simulation codes using an isolated galaxy. It is an improvement over manual exploration while hinting at a less known relation between the diffusion coefficient and the metal mass in the halo region. The exploration and calibration of the parameters of the sub-grid models with a machine learning approach is concluded to be versatile and directly applicable to different problems.