论文标题
DS3-NET:困难的公共与T1CE半监督的多模式MRI合成网络
DS3-Net: Difficulty-perceived Common-to-T1ce Semi-Supervised Multimodal MRI Synthesis Network
论文作者
论文摘要
对比增强的T1(T1CE)是用于诊断和分析脑肿瘤(尤其是神经胶质瘤)的最重要的磁共振成像(MRI)模式之一。在临床实践中,考虑到对比剂的额外成本和潜在的过敏风险,诸如T1,T2和流体衰减反转恢复等常见的MRI模式相对容易访问,而T1CE则更具挑战性。因此,开发一种从其他常见方式合成T1CE的方法是很大的临床必要性。当前的配对图像翻译方法通常具有需要大量配对数据的问题,并且在合成过程中不关注特定的感兴趣区域,例如肿瘤区域。为了解决这些问题,我们提出了一个难以感知的常见到T1CE半监督的多模式MRI合成网络(DS3-NET),涉及配对和未配对的数据以及双层知识蒸馏。 DS3-NET预测了难以促进综合任务的困难图。具体而言,PixelWise约束和斑块对比度约束由预测的难度图指导。通过对公共可用的BRATS2020数据集进行的大量实验,DS3-NET在每个方面都优于其受监督的对应物。此外,只有5%配对的数据,提议的DS3-NET使用100%配对数据的心态图像翻译方法实现了竞争性能,平均SSIM为0.8947,平均PSNR为23.60。
Contrast-enhanced T1 (T1ce) is one of the most essential magnetic resonance imaging (MRI) modalities for diagnosing and analyzing brain tumors, especially gliomas. In clinical practice, common MRI modalities such as T1, T2, and fluid attenuation inversion recovery are relatively easy to access while T1ce is more challenging considering the additional cost and potential risk of allergies to the contrast agent. Therefore, it is of great clinical necessity to develop a method to synthesize T1ce from other common modalities. Current paired image translation methods typically have the issue of requiring a large amount of paired data and do not focus on specific regions of interest, e.g., the tumor region, in the synthesization process. To address these issues, we propose a Difficulty-perceived common-to-T1ce Semi-Supervised multimodal MRI Synthesis network (DS3-Net), involving both paired and unpaired data together with dual-level knowledge distillation. DS3-Net predicts a difficulty map to progressively promote the synthesis task. Specifically, a pixelwise constraint and a patchwise contrastive constraint are guided by the predicted difficulty map. Through extensive experiments on the publiclyavailable BraTS2020 dataset, DS3-Net outperforms its supervised counterpart in each respect. Furthermore, with only 5% paired data, the proposed DS3-Net achieves competitive performance with state-of-theart image translation methods utilizing 100% paired data, delivering an average SSIM of 0.8947 and an average PSNR of 23.60.