论文标题

Blind2unblind:自我监督的图像Denoising with vingible盲点

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots

论文作者

Wang, Zejin, Liu, Jiazheng, Li, Guoqing, Han, Hua

论文摘要

真正的嘈杂清洁对在很大程度上是昂贵且难以获得的。同时,在实践中,接受过合成数据的培训的监督Denoiser的表现不佳。自我监督的DeNoiser仅从单个嘈杂图像中学习,可以解决数据收集问题。但是,在输入或网络设计期间,自我监督的剥落方法,尤其是盲点驱动的方法,遭受了相当大的信息丢失。缺乏有价值的信息大大降低了降低降低性能的上限。在本文中,我们提出了一种称为Blind2unblind的简单而有效的方法,以克服盲点驱动的denoising方法中的信息丢失。首先,我们介绍了一个全球意识的面具映射者,该映射器能够实现全球感知并加速培训。蒙版映射器在盲点上对所有像素进行了剥落,并将其映射到同一通道,从而使损耗函数能够一次优化所有盲点。其次,我们提出可重新可见的损失来训练Denoising网络并使盲点可见。 DeNoiser可以直接从原始噪声图像中学习而不会丢失信息或被困在身份映射中。我们还理论上分析了可回味损失的收敛性。与以前的工作相比,关于合成和现实世界数据集的广泛实验证明了我们方法的出色表现。代码可在https://github.com/demonsjin/blind2unblind上找到。

Real noisy-clean pairs on a large scale are costly and difficult to obtain. Meanwhile, supervised denoisers trained on synthetic data perform poorly in practice. Self-supervised denoisers, which learn only from single noisy images, solve the data collection problem. However, self-supervised denoising methods, especially blindspot-driven ones, suffer sizable information loss during input or network design. The absence of valuable information dramatically reduces the upper bound of denoising performance. In this paper, we propose a simple yet efficient approach called Blind2Unblind to overcome the information loss in blindspot-driven denoising methods. First, we introduce a global-aware mask mapper that enables global perception and accelerates training. The mask mapper samples all pixels at blind spots on denoised volumes and maps them to the same channel, allowing the loss function to optimize all blind spots at once. Second, we propose a re-visible loss to train the denoising network and make blind spots visible. The denoiser can learn directly from raw noise images without losing information or being trapped in identity mapping. We also theoretically analyze the convergence of the re-visible loss. Extensive experiments on synthetic and real-world datasets demonstrate the superior performance of our approach compared to previous work. Code is available at https://github.com/demonsjin/Blind2Unblind.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源