论文标题
控制两个组件胶体膜的形状和拓扑
Controlling the shape and topology of two-component colloidal membranes
论文作者
论文摘要
自组装膜的几何形状和拓扑变化是细胞生物学和工程跨多种过程的基础。与脂质双层类似,单层胶体膜具有平面流体样动力学和平面外弯曲弹性。它们的开放边缘和微米长度尺度提供了一个可易于研究的系统,以研究膜组装和重新配置的平衡能量和动态途径。在这里,我们发现带有短杆的掺杂胶体膜将盘状膜转化为具有复杂边缘结构的鞍形表面。鞍形膜被Enneper的最小表面良好地x.膜。理论建模表明,它们的形成是由升高的高斯模量驱动的,而高斯模量的增加又受短杆的比例控制。马鞍形表面的进一步结合导致拓扑不同的结构,包括cat骨,三核,四个无孔和高阶结构。在长期尺度上,我们观察到形成系统跨系统,海绵状相。胶体膜的独特特征揭示了实时伴随着聚结的拓扑转换。我们通过使它们对外部刺激有反应的形状来增强这些膜的功能。我们的结果表明,可以控制薄弹性板的形状和拓扑的新途径 - 这是由组成异质性引起的新兴弹性驱动的途径。
Changes in the geometry and topology of self-assembled membranes underlie diverse processes across cellular biology and engineering. Similar to lipid bilayers, monolayer colloidal membranes have in-plane fluid-like dynamics and out-of-plane bending elasticity. Their open edges and micron length scale provide a tractable system to study the equilibrium energetics and dynamic pathways of membrane assembly and reconfiguration. Here, we find that doping colloidal membranes with short miscible rods transforms disk-shaped membranes into saddle-shaped surfaces with complex edge structures. The saddle-shaped membranes are well-approximated by Enneper's minimal surfaces. Theoretical modeling demonstrates that their formation is driven by increasing positive Gaussian modulus, which in turn is controlled by the fraction of short rods. Further coalescence of saddle-shaped surfaces leads to diverse topologically distinct structures, including catenoids, tri-noids, four-noids, and higher order structures. At long time scales, we observe the formation of a system-spanning, sponge-like phase. The unique features of colloidal membranes reveal the topological transformations that accompany coalescence pathways in real time. We enhance the functionality of these membranes by making their shape responsive to external stimuli. Our results demonstrate a novel pathway towards control of thin elastic sheets' shape and topology -- a pathway driven by the emergent elasticity induced by compositional heterogeneity.