论文标题
Monge-ampère方程的DIRICHLET问题($(N-1)$ - PSH在Hermitian歧管上的功能
The Dirichlet problem for Monge-Ampère equation for $(n-1)$-PSH functions on Hermitian manifolds
论文作者
论文摘要
我们通过根据$(N-1)$ -PSH亚种的假设得出定量的边界估算版本,以$(n-1)$ -PSH函数解决可能具有退化的右侧的Dirichlet问题。此外,我们在封闭平衡的歧管的乘积上确认了带有边界的紧凑riemann表面的乘积假设。
We solve the Dirichlet problem for Monge-Ampère equation for $(n-1)$-PSH functions possibly with degenerate right-hand side, through deriving a quantitative version of boundary estimate under the assumption of $(n-1)$-PSH subsolutions. In addition, we confirm the subsolution assumption on a product of a closed balanced manifold with a compact Riemann surface with boundary.