论文标题

增强各种空间和时间粒度的人群流量预测

Enhancing crowd flow prediction in various spatial and temporal granularities

论文作者

Cardia, Marco, Luca, Massimiliano, Pappalardo, Luca

论文摘要

得益于物联网的扩散,如今,几乎可以使用非常规方法(例如,自行车站中的自行车数量)实时感知人类流动性。由于这种技术的扩散,过去几年见证了人类流动性研究的显着增长,这是由于它们在从交通管理到公共安全和计算流行病学的广泛应用中的重要性。人群流量预测,即在地理区域的位置预测汇总传入和外向流动,这是人群流量预测。尽管已经提出了几种深度学习方法来解决此问题,但它们的用法仅限于特定类型的空间镶嵌,无法对其预测提供足够的解释。我们提出了CrowdNet,这是一种基于图形卷积网络的人群流预测的解决方案。与最先进的解决方案相比,人群可以与不规则形状的区域一起使用,并对预测的人群流提供有意义的解释。我们对公共数据进行实验,以改变人群流的时空粒度,以显示我们模型对现有方法的优越性,我们研究了CrowdNet对缺失或嘈杂输入数据的可靠性。我们的模型是设计可靠的深度学习模型的一步,以预测和解释城市环境中的人类流离失所。

Thanks to the diffusion of the Internet of Things, nowadays it is possible to sense human mobility almost in real time using unconventional methods (e.g., number of bikes in a bike station). Due to the diffusion of such technologies, the last years have witnessed a significant growth of human mobility studies, motivated by their importance in a wide range of applications, from traffic management to public security and computational epidemiology. A mobility task that is becoming prominent is crowd flow prediction, i.e., forecasting aggregated incoming and outgoing flows in the locations of a geographic region. Although several deep learning approaches have been proposed to solve this problem, their usage is limited to specific types of spatial tessellations and cannot provide sufficient explanations of their predictions. We propose CrowdNet, a solution to crowd flow prediction based on graph convolutional networks. Compared with state-of-the-art solutions, CrowdNet can be used with regions of irregular shapes and provide meaningful explanations of the predicted crowd flows. We conduct experiments on public data varying the spatio-temporal granularity of crowd flows to show the superiority of our model with respect to existing methods, and we investigate CrowdNet's reliability to missing or noisy input data. Our model is a step forward in the design of reliable deep learning models to predict and explain human displacements in urban environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源