论文标题
进行量子计算的实验经典验证
Towards experimental classical verification of quantum computation
论文作者
论文摘要
随着当今的量子处理器超出了古典设备功能的范围[1-3],我们仍面临挑战,即使我们无法在古典计算机上检查其结果[4,5],这些设备即使这些设备的性能会按预期执行。在最近的计算机科学[6-8]中的突破中,开发了一项协议,该协议允许仅基于经典资源的不信任量子设备执行的计算的输出验证。在这里,我们遵循这些想法,并在首先的原则实验实验中证明了仅使用经典手段在小的被困离子量子处理器上的验证方案。我们将其与验证协议进行对比,该协议需要信任和详细的硬件知识,例如在门级基准测试[9]中或其他量子资源,以防我们无法访问或信任要测试的设备[5]。尽管我们的实验演示使用了Mahadev协议[6]的简化版本[10],但我们演示了验证完全不信任设备的必要步骤。我们协议的扩展版本将允许经典验证,不需要硬件访问或经过测试设备的详细知识。它的安全性依赖于交互式证明中的量子后安全陷阱门功能[11]。在概念上,可以使用此处考虑的交互式证明的概念直接但具有挑战性的扩展版本,可用于各种其他任务,例如验证量子优势[8],生成[12]并证明量子随机性[7]或合成的远程状态制备[13]。
With today's quantum processors venturing into regimes beyond the capabilities of classical devices [1-3], we face the challenge to verify that these devices perform as intended, even when we cannot check their results on classical computers [4,5]. In a recent breakthrough in computer science [6-8], a protocol was developed that allows the verification of the output of a computation performed by an untrusted quantum device based only on classical resources. Here, we follow these ideas, and demonstrate in a first, proof-of-principle experiment a verification protocol using only classical means on a small trapped-ion quantum processor. We contrast this to verification protocols, which require trust and detailed hardware knowledge, as in gate-level benchmarking [9], or additional quantum resources in case we do not have access to or trust in the device to be tested [5]. While our experimental demonstration uses a simplified version [10] of Mahadev's protocol [6] we demonstrate the necessary steps for verifying fully untrusted devices. A scaled-up version of our protocol will allow for classical verification, requiring no hardware access or detailed knowledge of the tested device. Its security relies on post-quantum secure trapdoor functions within an interactive proof [11]. The conceptually straightforward, but technologically challenging scaled-up version of the interactive proofs, considered here, can be used for a variety of additional tasks such as verifying quantum advantage [8], generating [12] and certifying quantum randomness [7], or composable remote state preparation [13].