论文标题

贝叶斯 - 欧几里得:发现不确定性的超弹性材料定律

Bayesian-EUCLID: discovering hyperelastic material laws with uncertainties

论文作者

Joshi, Akshay, Thakolkaran, Prakash, Zheng, Yiwen, Escande, Maxime, Flaschel, Moritz, De Lorenzis, Laura, Kumar, Siddhant

论文摘要

在我们最近的方法范围内,我们提出了一个无监督的贝叶斯学习框架,以发现具有可量化的不确定性的帕斯蒂亚和可解释的本构法律,我们提出了一个无监督的贝叶斯学习框架。与确定性的欧几里得一样,我们不诉诸于压力数据,而仅诉诸于现实的可测量的全场位移和全球反作用力数据。与对先验假定模型的校准相反,我们从基于候选功能的大型目录的本构模型ANSATZ开始。我们通过包括基于现有的基于物理学和现象学模型的特征来利用领域知识。在新的贝叶斯 - 欧几时间方法中,我们使用具有稀疏启动先验和蒙特卡洛采样的分层贝叶斯模型,以有效地求解了偏见的模型选择任务,并以多种多模式多模式概率分布的形式发现物理一致的构成方程。我们证明了能够准确有效地恢复各向同性和各向异性的高弹性模型,例如新霍克人,伊西哈拉,绅士托马斯,arruda-boyce,ogden,ogden和holzapfel模型,以及弹性固醇和弹性动力学中的模型。在两个认知不确定性下,发现的本构模型是可靠的 - 即,对本构目录的真实特征的不确定性和不良的不确定性 - 这是由位移场数据中的噪声引起的,并且由层次贝叶斯模型自动估算。

Within the scope of our recent approach for Efficient Unsupervised Constitutive Law Identification and Discovery (EUCLID), we propose an unsupervised Bayesian learning framework for discovery of parsimonious and interpretable constitutive laws with quantifiable uncertainties. As in deterministic EUCLID, we do not resort to stress data, but only to realistically measurable full-field displacement and global reaction force data; as opposed to calibration of an a priori assumed model, we start with a constitutive model ansatz based on a large catalog of candidate functional features; we leverage domain knowledge by including features based on existing, both physics-based and phenomenological, constitutive models. In the new Bayesian-EUCLID approach, we use a hierarchical Bayesian model with sparsity-promoting priors and Monte Carlo sampling to efficiently solve the parsimonious model selection task and discover physically consistent constitutive equations in the form of multivariate multi-modal probabilistic distributions. We demonstrate the ability to accurately and efficiently recover isotropic and anisotropic hyperelastic models like the Neo-Hookean, Isihara, Gent-Thomas, Arruda-Boyce, Ogden, and Holzapfel models in both elastostatics and elastodynamics. The discovered constitutive models are reliable under both epistemic uncertainties - i.e. uncertainties on the true features of the constitutive catalog - and aleatoric uncertainties - which arise from the noise in the displacement field data, and are automatically estimated by the hierarchical Bayesian model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源