论文标题
从2000年的每日1公里PM2.5每天的时空连续估计在中国的跟踪空气污染(TAP)框架下
Spatiotemporal continuous estimates of daily 1-km PM2.5 from 2000 to present under the Tracking Air Pollution in China (TAP) framework
论文作者
论文摘要
高空间分辨率PM2.5迫切需要长期涵盖长期的数据,以支持人口暴露评估和精致的空气质量管理。在这项研究中,我们提供了从2000年到现在的1公里空间分辨率的完整覆盖PM2.5预测,中国的跟踪空气污染(TAP,http://tapdata.org.cn/)框架。为了支持高空间分辨率建模,我们从国家和地方监测站收集了PM2.5测量。为了正确反映影响PM2.5中局部变化的土地覆盖特征的时间变化,我们在中国在2000年至2021年中构建了连续的年度地理信息数据集,包括路线图和合奏网格人口图。我们还检查了各种模型结构并进行了各种模型结构,并预测了计算成本和计算成本和模型性能。最终模型将10公里的TAP PM2.5融合了我们以前的工作,1公里的卫星气溶胶光学深度检索和土地使用参数具有随机森林模型。我们的年度型号的范围为0.80至0.84,我们的后广播模型的跨年度跨验证R2为0.76。这种开放式1公里分辨率PM2.5数据产品成功地揭示了PM2.5中的局部规模空间变化,并可能有益于环境研究和决策。
High spatial resolution PM2.5 data covering a long time period are urgently needed to support population exposure assessment and refined air quality management. In this study, we provided complete-coverage PM2.5 predictions with a 1-km spatial resolution from 2000 to the present under the Tracking Air Pollution in China (TAP, http://tapdata.org.cn/) framework. To support high spatial resolution modelling, we collected PM2.5 measurements from both national and local monitoring stations. To correctly reflect the temporal variations in land cover characteristics that affected the local variations in PM2.5, we constructed continuous annual geoinformation datasets, including the road maps and ensemble gridded population maps, in China from 2000 to 2021. We also examined various model structures and predictor combinations to balance the computational cost and model performance. The final model fused 10-km TAP PM2.5 predictions from our previous work, 1-km satellite aerosol optical depth retrievals and land use parameters with a random forest model. Our annual model had an out-of-bag R2 ranging between 0.80 and 0.84, and our hindcast model had a by-year cross-validation R2 of 0.76. This open-access 1-km resolution PM2.5 data product with complete coverage successfully revealed the local-scale spatial variations in PM2.5 and could benefit environmental studies and policy-making.