论文标题

基准和解释MIMO和多用户交流的端到端学习

Benchmarking and Interpreting End-to-end Learning of MIMO and Multi-User Communication

论文作者

Song, Jinxiang, Häger, Christian, Schröder, Jochen, O'Shea, Timothy J., Agrell, Erik, Wymeersch, Henk

论文摘要

端到端自动编码器(AE)学习具有超过人工工程收发器和编码方案的性能,而没有先验的通信理论原理知识。在这项工作中,我们旨在了解与公平基准相比,该主张在何种程度和方面成立。我们的特别重点是无内存的多输入多输出(MIMO)和多用户(MU)系统。考虑了四个案例研究:两个点对点(闭环和开环MIMO)和两个MU场景(MIMO广播和干扰通道)。对于点对点方案,我们通过选择改进的基线方案(包括几何形状,位和功率分配)来解释先前工作中观察到的一些性能提高。对于MIMO广播频道,我们演示了具有集中学习和分散执行的新型AE方法的可行性。有趣的是,学到的方案的执行速度接近非线性矢量扰动预编码,并且明显优于常规的零效力。最后,我们在解释学习的沟通方案时强调了潜在的陷阱。特别是,我们表明,考虑到的干扰通道的AE学会了避免干扰,尽管在旋转的参考框架中。除去每个用户的学习信号星座之后,结果方案对应于传统的时间共享几何形状。

End-to-end autoencoder (AE) learning has the potential of exceeding the performance of human-engineered transceivers and encoding schemes, without a priori knowledge of communication-theoretic principles. In this work, we aim to understand to what extent and for which scenarios this claim holds true when comparing with fair benchmarks. Our particular focus is on memoryless multiple-input multiple-output (MIMO) and multi-user (MU) systems. Four case studies are considered: two point-to-point (closed-loop and open-loop MIMO) and two MU scenarios (MIMO broadcast and interference channels). For the point-to-point scenarios, we explain some of the performance gains observed in prior work through the selection of improved baseline schemes that include geometric shaping as well as bit and power allocation. For the MIMO broadcast channel, we demonstrate the feasibility of a novel AE method with centralized learning and decentralized execution. Interestingly, the learned scheme performs close to nonlinear vector-perturbation precoding and significantly outperforms conventional zero-forcing. Lastly, we highlight potential pitfalls when interpreting learned communication schemes. In particular, we show that the AE for the considered interference channel learns to avoid interference, albeit in a rotated reference frame. After de-rotating the learned signal constellation of each user, the resulting scheme corresponds to conventional time sharing with geometric shaping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源