论文标题
S2F2:由单眼图像进行自我监督的高保真脸重建
S2F2: Self-Supervised High Fidelity Face Reconstruction from Monocular Image
论文作者
论文摘要
我们提出了一种新型的面部重建方法,能够重建详细的面部几何形状,从单眼图像中从空间变化的面部反射率。我们基于最新的基于DNN的自动编码器的进步,以可不同的射线追踪图像形成,以自我监督的方式训练。在提供基于学习的方法和实时重建的优势的同时,后一种方法缺乏忠诚。在这项工作中,我们首次仅利用自我监督的学习来实现高保真度的重建。我们新颖的粗到最深的深度结构使我们能够以高计算速度使用单个图像来解决从几何形状解耦的具有挑战性的问题。与最先进的方法相比,我们的方法实现了更具视觉吸引力的重建。
We present a novel face reconstruction method capable of reconstructing detailed face geometry, spatially varying face reflectance from a single monocular image. We build our work upon the recent advances of DNN-based auto-encoders with differentiable ray tracing image formation, trained in self-supervised manner. While providing the advantage of learning-based approaches and real-time reconstruction, the latter methods lacked fidelity. In this work, we achieve, for the first time, high fidelity face reconstruction using self-supervised learning only. Our novel coarse-to-fine deep architecture allows us to solve the challenging problem of decoupling face reflectance from geometry using a single image, at high computational speed. Compared to state-of-the-art methods, our method achieves more visually appealing reconstruction.