论文标题
竹子:与人机协同作用不断构建大型视觉数据集
Bamboo: Building Mega-Scale Vision Dataset Continually with Human-Machine Synergy
论文作者
论文摘要
大规模数据集在计算机视觉中起着至关重要的作用。但是当前的数据集盲目注释而没有与样品区分的区分,从而使数据收集效率低下且不计。开放的问题是如何积极地构建大型数据集。尽管先进的主动学习算法可能是答案,但我们在实验上发现它们在分发数据的现实注释方案中是la脚的。因此,这项工作为现实的数据集注释提出了一个新颖的主动学习框架。配备了此框架,我们构建了一个高质量的视觉数据集 - 竹子,由69m的图像分类注释,带有119K类别和809个类别的28m对象边界框注释。我们通过从几个知识库中整合的层次分类法来组织这些类别。分类注释比Imagenet22K大四倍,并且检测的注释比Object365大三倍。与ImagEnet22K和Objects365相比,预先训练在竹子上的模型在各种下游任务之间达到了卓越的性能(分类的6.2%增长,检测到2.1%的增长)。我们认为,我们的积极学习框架和竹子对于将来的工作至关重要。
Large-scale datasets play a vital role in computer vision. But current datasets are annotated blindly without differentiation to samples, making the data collection inefficient and unscalable. The open question is how to build a mega-scale dataset actively. Although advanced active learning algorithms might be the answer, we experimentally found that they are lame in the realistic annotation scenario where out-of-distribution data is extensive. This work thus proposes a novel active learning framework for realistic dataset annotation. Equipped with this framework, we build a high-quality vision dataset -- Bamboo, which consists of 69M image classification annotations with 119K categories and 28M object bounding box annotations with 809 categories. We organize these categories by a hierarchical taxonomy integrated from several knowledge bases. The classification annotations are four times larger than ImageNet22K, and that of detection is three times larger than Object365. Compared to ImageNet22K and Objects365, models pre-trained on Bamboo achieve superior performance among various downstream tasks (6.2% gains on classification and 2.1% gains on detection). We believe our active learning framework and Bamboo are essential for future work.