论文标题

新的量子神经网络设计

New quantum neural network designs

论文作者

Petitzon, Felix

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Quantum computers promise improving machine learning. We investigated the performance of new quantum neural network designs. Quantum neural networks currently employed rely on a feature map to encode the input into a quantum state. This state is then evolved via a parameterized variational circuit. Finally, a measurement is performed and post-processed on a classical computer to extract the prediction of the quantum model. We develop a new technique, where we merge feature map and variational circuit into a single parameterized circuit and post-process the results using a classical neural network. On a variety of real and generated datasets, we show that the new, combined approach outperforms the separated feature map & variational circuit method. We achieve lower loss, better accuracy, and faster convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源