论文标题

自主原子哈密顿的结构和X射线吸收光谱的主动采样,通过对抗性贝叶斯优化

Autonomous atomic Hamiltonian construction and active sampling of x-ray absorption spectroscopy by adversarial Bayesian optimization

论文作者

Zhang, Yixuan, Xie, Ruiwen, Long, Teng, Günzing, Damian, Wende, Heiko, Ollefs, Katharina J., Zhang, Hongbin

论文摘要

X射线吸收光谱(XAS)是一种完善的方法,用于对电子结构进行深入表征,因为它对局部配位和活动离子的电子状态的敏感性。在实践中,应在XAS测量过程中对数百个能量点进行采样,其中大多数是多余的,并且不包含重要信息。此外,这也是一个乏味的程序,用于估计原子哈密顿量的合理参数以进行机械理解。我们实施了一种对抗性的贝叶斯优化(ABO)算法,该算法包括两个耦合BOS,以自动适合多重模型哈密顿式模型,同时基于主动学习有效地样本。以Nio为例,对于原子模型可以很好地拟合的模拟光谱,我们发现少于30个采样点足以获得具有相应晶体场或电荷传递模型的完整XAS,可以基于直觉的假设学习选择。在实验光谱上进一步应用,它表明少于80个采样点已经可以给出合理的XAS和可靠的原子模型参数。我们的ABO算法在自动化物理驱动的XAS分析和主动学习抽样中具有巨大的潜力。

X-ray absorption spectroscopy (XAS) is a well-established method for in-depth characterization of the electronic structure due to its sensitivity to the local coordination and electronic states of the active ions. In practice hundreds of energy points should be sampled during the XAS measurement, most of which are redundant and do not contain important information. In addition, it is also a tedious procedure to estimate reasonable parameters in the atomic Hamiltonian for mechanistic understanding. We implemented an Adversarial Bayesian optimization (ABO) algorithm comprising two coupled BOs to automatically fit the multiplet model Hamiltonian and meanwhile to sample effectively based on active learning. Taking NiO as an example, for simulated spectra which can be well fitted by the atomic model, we found that less than 30 sampling points are enough to obtain the complete XAS with the corresponding crystal field or charge transfer model, which can be selected based on intuitive hypothesis learning. Further application on the experimental spectra, it revealed that less than 80 sampling points can already give reasonable XAS and reliable atomic model parameters. Our ABO algorithm has a great potential for future application in automated physics-driven XAS analysis and active learning sampling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源