论文标题
近似性和概括
Approximability and Generalisation
论文作者
论文摘要
近似学习机器在小型设备时代已经变得很流行,包括定量,分解,哈希或其他压缩的预测指标,并寻求解释和保证这种方法的良好概括能力才刚刚开始。在本文中,我们通过预测因子对手头近似运算符的作用的敏感性概念来研究从数据中学到的预测变量的近似性的作用。我们证明了此类预测因子的概括,对于任何可PAC-切实可行的类别和任何给定的近似算子,都产生以下主要发现。 1)我们表明,在轻度条件下,可以从较小标记的样本中学习相似的目标概念,并提供了足够的未标记数据。 2)我们提供算法来保证一个良好的预测指标,其近似值也具有相同的概括保证。 3)我们重点介绍了敏感性类别中结构的自然例子,这些实例减少了,甚至可能消除了原本不标记的数据的大量要求,因此从此以后,将新的光线放在一个使一个问题实例比另一个问题更易于学习的情况下。这些结果将现代模型压缩方法的范围嵌入了统计学习理论的一般目标中,作为回报,该方法通过最小化统一界限提出了适当的算法。
Approximate learning machines have become popular in the era of small devices, including quantised, factorised, hashed, or otherwise compressed predictors, and the quest to explain and guarantee good generalisation abilities for such methods has just begun. In this paper we study the role of approximability in learning, both in the full precision and the approximated settings of the predictor that is learned from the data, through a notion of sensitivity of predictors to the action of the approximation operator at hand. We prove upper bounds on the generalisation of such predictors, yielding the following main findings, for any PAC-learnable class and any given approximation operator. 1) We show that under mild conditions, approximable target concepts are learnable from a smaller labelled sample, provided sufficient unlabelled data. 2) We give algorithms that guarantee a good predictor whose approximation also enjoys the same generalisation guarantees. 3) We highlight natural examples of structure in the class of sensitivities, which reduce, and possibly even eliminate the otherwise abundant requirement of additional unlabelled data, and henceforth shed new light onto what makes one problem instance easier to learn than another. These results embed the scope of modern model compression approaches into the general goal of statistical learning theory, which in return suggests appropriate algorithms through minimising uniform bounds.