论文标题

多平面体积分段中的UNET体系结构 - 在三个膝盖MRI队列中验证

UNet Architectures in Multiplanar Volumetric Segmentation -- Validated on Three Knee MRI Cohorts

论文作者

Sengara, Sandeep Singh, Meulengrachtb, Christopher, Boesenb, Mikael Ploug, Overgaardb, Anders Føhrby, Gudbergsenb, Henrik, Nybingb, Janus Damm, Dam, Erik Bjørnager

论文摘要

UNET已成为分割2D医学图像的黄金标准方法,任何新方法都必须被验证。但是,近年来,已经提出了一些有希望的结果的精液UNET的变化。但是,就这些体系结构的普遍性尚无明确的共识,而UNET目前仍然是方法论黄金标准。这项研究的目的是评估3D分割的一些最有前途的未启发的架构。对于3D扫描的分割,未经网络启发的方法也是主导的,但是在应用程序之间存在较大的种类。通过在不同的维度中评估架构,以不同的方法嵌入,并且对于不同的任务,我们的目的是评估这些Unet-Anternatives中的任何一个是否有望作为一种新的黄金标准,它比UNET更好地推广。具体而言,我们研究了架构作为多平面UNET 3D分割方法中的中央2D分割核心,该方法先前在MICCAI分割十项全能中表现出了出色的概括。如果在这种情况下,一个有希望的不变变化始终优于UNET,则可以证明可概括性。为此,我们评估了与膝盖MRI的三个不同队列的软骨分割的四个架构。

UNet has become the gold standard method for segmenting 2D medical images that any new method must be validated against. However, in recent years, several variations of the seminal UNet have been proposed with promising results. However, there is no clear consensus on the generalisability of these architectures, and UNet currently remains the methodological gold standard. The purpose of this study was to evaluate some of the most promising UNet-inspired architectures for 3D segmentation. For the segmentation of 3D scans, UNet-inspired methods are also dominant, but there is a larger variety across applications. By evaluating the architectures in a different dimensionality, embedded in a different method, and for a different task, we aimed to evaluate if any of these UNet-alternatives are promising as a new gold standard that generalizes even better than UNet. Specifically, we investigated the architectures as the central 2D segmentation core in the Multi-Planar Unet 3D segmentation method that previously demonstrated excellent generalization in the MICCAI Segmentation Decathlon. Generalisability can be demonstrated if a promising UNet-variant consistently outperforms UNet in this setting. For this purpose, we evaluated four architectures for cartilage segmentation from three different cohorts with knee MRIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源